
Sample Average Approximation Method

for Chance Constrained Programming:

Theory and Applications

B.K. Pagnoncelli� S. Ahmedy A. Shapiro z

Communicated by P.M. Pardalos

Abstract

We study sample approximations of chance constrained problems. In partic-

ular, we consider thesample average approximation(SAA) approach and discuss

the convergence properties of the resulting problem. We discuss how one can

use the SAA method to obtain good candidate solutions for chance constrained
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problems. Numerical experiments are performed to correctly tune the parameters

involved in the SAA. In addition, we present a method for constructing statistical

lower bounds for the optimal value of the considered problemand discuss how one

should tune the underlying parameters. We apply the SAA to two chance con-

strained problems. The �rst is a linear portfolio selection problem with returns

following a multivariate lognormal distribution. The second is a joint chance

constrained version of a simple blending problem.

Key words : Chance constraints, Sample average approximation, Portfolio selection.

1 Introduction

We consider chance constrained problems of the form

min
x2 X

f (x); s:t : prob
�

G(x; � ) � 0
	

� 1 � �: (1)

Here X � Rn , � is a random vector1 with probability distribution P supported on a

set � � Rd, � 2 (0; 1), f : Rn ! R is a real valued function andG : Rn � � ! Rm .

Chance constrained problems were introduced in Charnes, Cooper and Symmonds [1]

1We use the same notation� to denote a random vector and its particular realization. Which of
these two meanings will be used in a particular situation will be clear from the context.
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and have been extensively studied since. For a theoretical background we may refer

to Pr�ekopa [2] where an extensive list of references can be found. Applications of

chance constrained programming include, e.g., water management [3] and optimization

of chemical processes [4],[5].

Although chance constraints were introduced almost 50 years ago, little progress

was made until recently. Even for simple functionsG(�; � ), e.g., linear, problem (1) may

be extremely di�cult to solve numerically. One of the reasons is that for a givenx 2 X

the quantity probf G(x; � ) � 0g is hard to compute since it requires a multi-dimensional

integration. Thus, it may happen that the only way to check feasibility, of a given

point x 2 X , is by Monte-Carlo simulation. In addition, the feasible set of problem

(1) can be nonconvex even if the setX is convex and the functionG(x; � ) is convex

in x. Therefore the development went into two somewhat di�erentdirections. One

is to discretize the probability distribution P and consequently to solve the obtained

combinatorial problem (see, e.g., Dentcheva, Pr�ekopa andRuszczy�nski [6], Luedtke,

Ahmed and Nemhauser [7]). Another approach is to employ convex approximations of

chance constraints (cf., Nemirovski and Shapiro [8]).

In this paper we discuss thesample average approximation(SAA) approach to

chance constrained problems. Such an approximation is obtained by replacing the actual
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distribution in chance constraint by an empirical distribution corresponding to a random

sample. This approach is well known for stochastic programswith expected values

objectives [9]. SAA methods for chance constrained problems have been investigated

in [10] and [11].

The remainder of the paper is organized as follows. In Section 2 we provide theoret-

ical background for the SAA approach, showing convergence of the optimal value of the

approximation to the optimal value of the true problem. In addition, following [8] we

describe how to construct bounds for the optimal value of chance constrained problems

of the form (1). In Section 3, we present a chance constrainedportfolio selection prob-

lem. We apply the SAA method to obtain upper bounds as well as candidate solutions

to the problems. In addition we present several numerical experiments that indicate

how one should tune the parameters of the SAA approach. In Section 4 we present

a simple blending problem modeled as a joint chance constrained problem. Section 5

concludes the paper and suggests directions for future research.

We use the following notation throughout the paper. The integer part of number

a 2 R is denoted bybac. By �( z) we denote the cumulative distribution function (cdf)

of standard normal random variable and byz� the corresponding critical value, i.e.,
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�( z� ) = 1 � � , for � 2 (0; 1),

B (k; p; N) :=
P k

i =0

� N
i

�
pi (1 � p)N � i ; k = 0; :::; N; (2)

denotes the cdf of binomial distribution. For setsA; B � Rn we denote by

D(A; B ) := supx2 A dist(x; B ) (3)

the deviation of set A from set B .

2 Theoretical Background

In order to simplify the presentation we assume in this section that the constraint

function G : Rn � � ! R is real valued. Of course, a number of constraintsGi (x; � ) � 0,

i = 1; : : : ; m, can be equivalently replaced by one constraint with

G(x; � ) := max
1� i � m

Gi (x; � ) � 0:

Such operation of taking maximum preserves convexity of functions Gi (�; � ). We assume

that the set X is closed, the function f (x) is continuous and the function G(x; � ) is a
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Carath�eodory function, i.e., G(x; �) is measurable for everyx 2 Rn andG(�; � ) continuous

for a.e. � 2 �.

Problem (1) can be written in the following equivalent form

min
x2 X

f (x); s:t : p(x) � �; (4)

where

p(x) := Pf G(x; � ) > 0g:

Now let � 1; : : : ; � N be an independent identically distributed(iid) sample of N real-

izations of random vector� and PN := N � 1
P N

j =1 �( � j ) be the respective empirical

measure. Here �(� ) denotes measure of mass one at point� , and hencePN is a discrete

measure assigning probability 1=N to each point � j , j = 1; : : : ; N . The sample average

approximation p̂N (x) of function p(x) is obtained by replacing the `true' distribution P

by the empirical measurePN . That is, p̂N (x) := PN f G(x; � ) > 0g: Let 1l(0;1 ) : R ! R

be the indicator function of (0; 1 ), i.e.,

1l(0;1 )(t) :=

8
>>>><

>>>>:

1; if t > 0;

0; if t � 0:
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Then we can write that p(x) = EP [1l(0;1 )(G(x; � ))] and

p̂N (x) = EPN [1l(0;1 )(G(x; � ))] =
1
N

NX

j =1

1l(0;1 )

�
G(x; � j )

�
:

That is, p̂N (x) is equal to the proportion of times that G(x; � j ) > 0. The problem,

associated with the generated sample� 1; : : : ; � N , is

min
x2 X

f (x); s:t : p̂N (x) � : (5)

We refer to problems (4) and (5) as the true and SAA problems, respectively, at the

respective signi�cance levels� and  . Note that, following [11], we allow the signi�cance

level  � 0 of the SAA problem to be di�erent from the signi�cance level� of the true

problem. Next we discuss the convergence of a solution of theSAA problem (5) to that

of the true problem (4) with respect to the sample sizeN and the signi�cance level .

A convergence analysis of the SAA problem (5) has been given in [11]. Here we present

complementary results under slightly di�erent assumptions.

Recall that a sequencef k(x) of extended real valued functions is said toepiconverge

to a function f (x), written f k
e! f , if for any point x the following two conditions hold:
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(i) for any sequencexk converging tox one has

lim inf
k!1

f k(xk) � f (x); (6)

(ii) there exists a sequencexk converging tox such that

lim sup
k!1

f k(xk) � f (x): (7)

Note that by the (strong) law of large numbers (LLN) we have that for any x, p̂N (x)

converges w.p.1 top(x).

Proposition 2.1 Let G(x; � ) be a Carath�eodory function. Then the functionsp(x) and

p̂N (x) are lower semicontinuous, and̂pN
e! p w.p.1. Moreover, suppose that for every

�x 2 X the set f � 2 � : G(�x; � ) = 0 g has P-measure zero, i.e.,G(�x; � ) 6= 0 w.p.1.

Then the functionp(x) is continuous at everyx 2 X and p̂N (x) converges top(x) w.p.1

uniformly on any compact setC � X , i.e.,

sup
x2 C

jp̂N (x) � p(x)j ! 0 w:p:1 as N ! 1 : (8)

Proof. Consider function (x; � ) := 1l (0;1 )

�
G(x; � )

�
. Recall that p(x) = EP [ (x; � )]
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and p̂N (x) = EPN [ (x; � )]. Since the function 1l(0;1 )(�) is lower semicontinuous and

G(�; � ) is a Carath�eodory function, it follows that the function  (x; � ) is random lower

semicontinuous2 (see, e.g., [12, Proposition 14.45]). Then by Fatou's lemmawe have

for any �x 2 Rn ,

lim inf x! �x p(x) = lim inf x! �x
R

�  (x; � )dP(� )

�
R

� lim inf x! �x  (x; � )dP(� ) �
R

�  (�x; � )dP(� ) = p(�x):

This shows lower semicontinuity ofp(x). Lower semicontinuity of p̂N (x) can be shown

in the same way.

The epiconvergence ^pN
e! p w.p.1 is a direct implication of Artstein and Wets [13,

Theorem 2.3]. Note that, of course,j (x; � )j is dominated by an integrable function

since j (x; � )j � 1. Suppose, further, that for every �x 2 X , G(�x; � ) 6= 0 w.p.1, which

implies that  (�; � ) is continuous at �x w.p.1. Then by the Lebesgue Dominated Con-

vergence Theorem we have for any �x 2 X ,

limx! �x p(x) = lim x! �x

R
�  (x; � )dP(� )

=
R

� limx! �x  (x; � )dP(� ) =
R

�  (�x; � )dP(� ) = p(�x);

which shows continuity ofp(x) at x = �x. Finally, the uniform convergence (8) follows

2Random lower semicontinuous functions are called normal integrands in [12].
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by a version of the uniform law of large numbers (see, [9, Proposition 7, p.363]).

By lower semicontinuity of p(x) and p̂N (x) we have that the feasible sets of the

`true' problem (4) and its SAA counterpart (5) are closed sets. Therefore, if the set

X is bounded (i.e., compact), then problems (4) and (5) have nonempty sets of opti-

mal solutions denoted, respectively, asS and ŜN , provided that these problems have

nonempty feasible sets. We also denote by#� and #̂N the optimal values of the true

and the SAA problems, respectively. The following result shows that for  = � , under

mild regularity conditions, #̂N and ŜN converge w.p.1 to their counterparts of the true

problem.

We make the following assumption.

(A) There is an optimal solution �x of the true problem (4) such that for any" > 0

there is x 2 X with kx � �xk � " and p(x) < � .

In other words the above condition (A) assumes existence of asequencef xkg � X

converging to an optimal solution �x 2 S such that p(xk) < � for all k, i.e., �x is an

accumulation point of the setf x 2 X : p(x) < � g.

Proposition 2.2 Suppose that the signi�cance levels of the true and SAA problems are

the same, i.e., = � , the setX is compact, the functionf (x) is continuous,G(x; � ) is
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a Carath�eodory function, and condition (A) holds. Then#̂N ! #� and D(ŜN ; S) ! 0

w.p.1 asN ! 1 .

Proof. By the condition (A), the set S is nonempty and there isx 2 X such that

p(x) < � . We have that p̂N (x) converges top(x) w.p.1. Consequently ^pN (x) < � , and

hence the SAA problem has a feasible solution, w.p.1 forN large enough. Since ^pN (�)

is lower semicontinuous, the feasible set of SAA problem is compact, and henceŜN is

nonempty w.p.1 for N large enough. Of course, ifx is a feasible solution of an SAA

problem, then f (x) � #̂N . Since we can take such pointx arbitrary close to �x and f (�)

is continuous, we obtain that

lim sup
N !1

#̂N � f (�x) = #� w:p:1: (9)

Now let x̂N 2 ŜN , i.e., x̂N 2 X , p̂N (x̂N ) � � and #̂N = f (x̂N ). Since the setX is

compact, we can assume by passing to a subsequence if necessary that x̂N converges to

a point �x 2 X w.p.1. Also we have thatp̂N
e! p w.p.1, and hence

lim inf
N !1

p̂N (x̂N ) � p(�x) w:p:1:

It follows that p(�x) � � and hence �x is a feasible point of the true problem, and thus
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f (�x) � #� . Also f (x̂N ) ! f (�x) w.p.1, and hence

lim inf
N !1

#̂N � #� w:p:1: (10)

It follows from (9) and (10) that #̂N ! #� w.p.1. It also follows that the point �x is an

optimal solution of the true problem and then we haveD(ŜN ; S) ! 0 w.p.1.

Condition (A) is essential for the consistency of̂#N and ŜN . Think, for example,

about a situation where the constraintp(x) � � de�nes just one feasible point �x such

that p(�x) = � . Then arbitrary small changes in the constraint ^pN (x) � � may result in

that the feasible set of the corresponding SAA problem becomes empty. Note also that

condition (A) was not used in the proof of inequality (10). Veri�cation of condition (A)

can be done by ad hoc methods.

Suppose now that > � . Then by Proposition 2.2 we may expect that with increase

of the sample sizeN , an optimal solution of the SAA problem will approach an optimal

solution of the true problem with the signi�cance level rather than � . Of course,

increasing the signi�cance level leads to enlarging the feasible set of the true problem,

which in turn may result in decreasing of the optimal value ofthe true problem. For a

point �x 2 X we have that p̂N (�x) �  , i.e., �x is a feasible point of the SAA problem, i�
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no more thanN times the event \G(�x; � j ) > 0" happens inN trials. Since probability

of the event \G(�x; � j ) > 0" is p(�x), it follows that

prob
�

p̂N (�x) � 
	

= B
�
bN c; p(�x); N

�
: (11)

Recall that by Cherno� inequality [14], for k > Np ,

B(k; p; N) � 1 � exp
�

� N (k=N � p)2=(2p)
	

:

It follows that if p(�x) � � and  > � , then 1 � prob
�

p̂N (�x) � 
	

approaches zero at

a rate of exp(� �N ), where � := (  � � )2=(2� ). Of course, if �x is an optimal solution

of the true problem and �x is feasible for the SAA problem, then#̂N � #� . That is, if

 > � , then the probability of the event \#̂N � #� " approaches one exponentially fast.

Similarly, we have that if p(�x) = � and  < � , then probability that �x is a feasible

point of the corresponding SAA problem approaches zero exponentially fast (cf., [11]).

In order to get a lower bound for the optimal value#� we proceed as follows. Let
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us choose two positive integersM and N , and let

� N := B
�
bN c; �; N

�

and L be the largest integer such that

B(L � 1; � N ; M ) � �: (12)

Next generateM independent samples� 1;m ; : : : ; � N;m , m = 1; : : : ; M , each of sizeN , of

random vector � . For each sample solve the associated optimization problem

min
x2 X

f (x); s:t :
NX

j =1

1l(0;1 )

�
G(x; � j;m )

�
� N; (13)

and hence calculate its optimal valuê#m
N , m = 1; : : : ; M . That is, solve M times the

corresponding SAA problem at the signi�cance level . It may happen that problem

(13) is either infeasible or unbounded from below, in which case we assign its optimal

value as +1 or �1 , respectively. We can view#̂m
N , m = 1; : : : ; M , as an iid sample of

the random variable#̂N , where#̂N is the optimal value of the respective SAA problem

at signi�cance level  . Next we rearrange the calculated optimal values in the nonde-
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creasing order as followŝ#(1)
N � � � � � #̂(M )

N , i.e., #̂(1)
N is the smallest,#̂(2)

N is the second

smallest etc, among the valueŝ#m
N , m = 1; : : : ; M . We use the random quantity#̂(L )

N as

a lower bound of the true optimal value#� . It is possible to show that with probability

at least 1� � , the random quantity #̂(L )
N is below the true optimal value#� , i.e., #̂(L )

N

is indeed a lower bound of the true optimal value with con�dence at least 1� � (see3

[8]). We will discuss later how to choose the constantsM; N and  .

3 A Chance Constrained Portfolio Problem

Consider the following maximization problem subject to a single chance constraint

max
x2 X

E
�
r T x

�
; s:t : prob

�
r T x � v

	
� 1 � �: (14)

Here x 2 Rn is vector of decision variables,r 2 Rn is a random (data) vector (with

known probability distribution), v 2 R and � 2 (0; 1) are constants,e is a vector whose

components are all equal to 1 and

X := f x 2 Rn : eT x = 1; x � 0g:

3In [8] this lower bound was derived for  = 0. It is straightforward to extend the derivations to
the case of > 0.
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Note that, of course,E
�
r T x

�
= r T x, wherer := E[r ] is the corresponding mean vector.

That is, the objective function of problem

The motivation to study (14) is the portfolio selection problem going back to

Markowitz [15]. The vector x represents the percentage of a total wealth of one dol-

lar invested in each ofn available assets,r is the vector of random returns of these

assets and the decision agent wants to maximize the mean return subject to having a

return greater or equal to a desired levelv, with probability at least 1 � � . We note

that problem (14) is not realistic because it does not incorporate crucial features of

real markets such as cost of transactions, short sales, lower and upper bounds on the

holdings, etc. However, it will serve to our purposes as anexampleof an application of

the SAA method. For a more realistic model we can refer the reader, e.g., to [16].

3.1 Applying the SAA

First assume that r follows a multivariate normal distribution with mean vector r and

covariance matrix �, written r � N (r; �). In that case r T x � N
�
r T x; xT � x

�
, and

hence (as it is well known) the chance constraint in (14) can be written as a convex

second order conic constraint (SOCC). Using the explicit form of the chance constraint,

one can e�ciently solve the convex problem (14) for di�erentvalues of� . An e�cient
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frontier of portfolios can be constructed in an objective function value versus con�dence

level plot, that is, for every con�dence level� we associate the optimal value of problem

(14). The e�cient frontier dates back to Markowitz [15].

If r follows a multivariate lognormal distribution, then no closed form solution is

available. Thesample average approximation(SAA) of problem (14) can be written as

max
x2 X

r T x; s:t : p̂N (x) � ; (15)

where

p̂N (x) := N � 1
NX

i =1

1l(0;1 )(v � r T
i x)

and  2 [0; 1). The reason we use instead of � is to suggest that for a �xed � , a

di�erent choice of the parameter in (15) might be suitable. For instance, if = 0,

then the SAA problem (15) becomes the linear program

max
x2 X

r T x; s.t. r T
i x � v; i = 1; : : : ; N: (16)

A recent paper by Campi and Garatti [17], building on the workof Cala�ore and Campi

[18], provides an expression for the probability of an optimal solution x̂N of the SAA
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problem (5), with  = 0, to be infeasible for the true problem (4). That is, under the

assumptions that the setX and functions f (�) and G(�; � ), � 2 � ; are convex and that

w.p.1 the SAA problem attains unique optimal solution, we have that for N � n,

probf p(x̂N ) > � g � B(n � 1; �; N ); (17)

and the above bound is tight. Thus, for a con�dence parameter� 2 (0; 1) and a sample

sizeN � such that

B(n � 1; �; N � ) � �; (18)

the optimal solution of problem (16) is feasible for the corresponding true problem (14)

with probability at least 1 � � .

For  > 0, problem (15) can be written as the mixed-integer linear program

max
x;z

r T x; (19a)

s.t. r T
i x + vzi � v; (19b)

NX

i =1

zi � N; (19c)

x 2 X; z 2 f 0; 1gN ; (19d)
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with one binary variable for each sample point. To see that problems (15) and (19) are

equivalent, let (x; z1; : : : ; zN ) be feasible for problem (19). Then from the �rst constraint

of (19) we havezi � 1l(0;1 )(v � r T
i x), and so from the second constraint of (19) we have

 � N � 1
NX

i

zi � N � 11l(0;1 )(v � r T
i x) = p̂N (x): (20)

Thus x is feasible to (15) and has the same objective value as in (19). Conversely, letx

be feasible for problem (15). De�ningzi = 1l (0;1 )(v � r T
i x); i = 1; : : : ; N , we have that

(x; z1; : : : ; zN ) is feasible for problem (19) with the same objective value.

Given a �xed � in (14), it is not clear what are the best choices of and N for (19).

We believe it is problem dependent and numerical investigations will be performed with

di�erent values of both parameters. We know from Proposition 2.2 that, for  = � the

larger the N the closer we are to the original problem (14). However, the number of

samplesN must be chosen carefully because problem (19) is a binary problem. Even

moderate values ofN can generate instances that are very hard to solve.

3.2 Finding Candidate Solutions

First we perform numerical experiments for the SAA method with  = 0 (problem (16))

assuming that r � N (r; �). We considered 10 assets (n = 10) and the data for the
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estimation of the parameters was taken from historical monthly returns of 10 US major

companies. We wrote the codes in GAMS and solved the problemsusing CPLEX 9.0.

The computer was a PC with an Intel Core 2 processor and 2GB of RAM.

Let us �x � = 0:10 and � = 0:01. For these values, the sample size suggested by

(18) is N � = 183. We ran 20 independent replications of (16) for each of the sample

sizesN = 30; 40; : : : ; 200 and forN � = 183. We also build ane�cient frontier plot

of optimal portfolios with an objective value versusprobf r T x � � vg, where x � is the

optimal solution of problem (14) for a given� . We show in the same plot (Figure 1) the

corresponding objective function values andprobf r T x̂N � vg for each optimal solution

x̂N found for the SAA (16). To identify each point with a sample size, we used a

gray scale that attributes light tones of gray to smaller sample sizes and darker ones

to larger samples. The e�cient frontier curve is calculatedfor � = 0:8; 0:81; : : : ; 0:99

and then connected by lines. The vertical and horizontal lines are for reference only:

they represent the optimal value for problem (14) with� = 0:10 and the 90% reliability

level, respectively.

Figure 1 shows interesting features of the SAA (16). Although larger sample sizes

always generate feasible points, the value of the objectivefunction, in general, is quite

small if compared with the optimal value 1:004311 of problem (14) with� = 0:10. We
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also observe the absence of a convergence property: if we increase the sample size, the

feasible region of problem (16) gets smaller and the approximation becomes more and

more conservative and therefore suboptimal. The reason is that for increasingly large

samples the conditionr T
i x � v for all i approaches the conditionprobf r T x � vg = 1.

We performed similar experiments for the lognormal case. For each point obtained

in the SAA, we estimated the probability by Monte-Carlo techniques. The reader is

referred to [20] for detailed instructions of how to generate samples from a multivariate

lognormal distribution. Since in the lognormal case one cannot compute the e�cient

frontier, we also included in Figure 2 the upper bounds for� = 0:02; : : : ; 0:20, calculated

according to (12). The detailed computation of the upper bounds will be given in the

next subsection.

In order to �nd better candidate solutions for problem (14),we need to solve the

SAA with  > 0, (problem (19)), which is a combinatorial problem. Since our portfolio

problem is a linear one, we still can solve problem (15) e�ciently for a moderate number

(e.g., 200 constraints) of instances. We performed tests for problem (15) with both

distributions, �xing  = 0:05 and 0:10 and changingN .

The best candidate solutions to (14) were obtained with = 0:05. We considered

di�erent sample sizes from 30 to 200. Although several points are infeasible to the
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original problem, we observe in Figures 3 and 4 that whenevera point is feasible it is

close to optimal solution in the normal case or to the upper bound under lognormality.

For  = 0:10, almost all generated points were infeasible in both cases, as seen in

Figures 5 and 6.

To investigate the di�erent possible choices of and N in problem (19), we created

a three dimensional representation which we will callN -plot. The domain is a dis-

cretization of values of and N , forming a grid with pairs (; N ). For each pair we

solve an instance of problem (19) with these parameters and stored the optimal value

and the approximate probability of being feasible to the original problem (14). The

z-axis represents the optimal value associated to each pointin the domain in the grid.

Finally, we created a surface of triangles based on this gridas follows. Let i be the

index for the values of and j for the values ofN . If candidate points associated with

grid members (i; j ); (i + 1; j ) and (i; j + 1) or ( i + 1; j + 1) ; (i + 1; j ) and (i; j + 1) are

feasible to problem (14) (with probability greater than or equal to (1 � � )), then we

draw a dark gray triangle connecting the three points in the space. Otherwise, we draw

a light gray triangle.

We created aN -plot for problem (14) with normal returns. The result can beseen

in Figure 7, where we also included the plane corresponding to the optimal solution
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with � = 0:10. The values for parameter were 0; 0:01; 0:02; : : : ; 0:10 and for N =

30; 40; 50; : : : ; 200. There are several interesting features of Figure 7 to bediscussed.

First, note that any �xed  , small sample sizes tend to generate infeasible solutions and

large samples feasible ones. As predicted by the results of Campi and Garatti, when

 = 0, large sample sizes generate feasible solutions, although they can be seen to be

of poor quality judging by the low peaks observed in this region. The concentration

of high peaks corresponds to values around�= 2 = 0:05 for almost all sample sizes,

including small ones (varying from 50 until 120). We generated di�erent instances of

Figure 7 and the output followed the pattern described here.

Even though there are peaks in other regions, Figure 7 suggests a strategy to obtain

good candidates for chance constrained problems: choose close to�= 2, solve instances

of SAA with small sizes ofN and keep the best solution. This is fortunate because SAA

problems with  > 0 are binary problems that can be hard to solve. Our experience

with this problem and others is that this strategy works better than trying to solve

large instances os SAA problems. Note that the choice = �= 2 is from our empirical

experience. In general this choice depends on the underlying problem.
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3.3 Upper Bounds

A method to compute lower bounds of chance constrained problems of the form (1)

was suggested in [8]. We summarized that procedure at the endof Section 2 leaving

the question of how to choose the constantsL; M and N . Given �; M and N , it is

straightforward to specifyL: it is the largest integer that satis�es (12). For a givenN ,

the larger M the better because we are approximating theL-th order statistic of the

random variable #̂N . However, note thatM represents the number of problems to be

solved and this value is often constrained by computationallimitations.

In [8] an indication of how N should be chosen is not given. It is possible to gain

some insight on the magnitude ofN by doing some algebra in inequality (12). With

 = 0, the �rst term ( i = 0) of the sum (12) is

�
1 � (1 � � )N

� M
�

�
1 � e� N�

� M
: (21)

Approximation (21) suggests that for small values of� we should takeN of order

O(� � 1). If N is much bigger than 1=� then we would have to choose a very largeM in

order to honor inequality (12). For instance if� = 0:10; � = 0:01 andN = 100 instead

of N = 1=� = 10 or N = 2=� = 20, we needM to be greater than 100 000 in order to
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satisfy (12), which can be computationally intractable forsome problems. IfN = 200

then M has to be grater then 109, which is impractical for most applications.

In [11], the authors applied the same technique to generate bounds on probabilistic

versions of the set cover problem and the transportation problem. To construct the

bounds they variedN and usedM = 10 and L = 1. For many instances they obtained

lower bounds slightly smaller (less than 2%) or even equal tothe best optimal values

generated by the SAA. In the portfolio problem, the choiceL = 1 generated poor upper

bounds as we will see.

Since problem (14) is a maximization problem, we calculatedupper bounds �xing

� = 0:01 for all cases and by choosing three di�erent values for theconstantsL; M and

N . First we �xed L = 1 and N = d1=� e (solid line in Figure 2). The constantM was

chosen to satisfy the inequality (12). The results were not satisfactory, mainly because

M ended up being too small. Since the constantM de�nes the number of samples from

v̂N and since our problem is a linear one, we decided to �xM = 1 000. Then we chose

N = d1=� e (dashed line) andd2=� e (dotted line) in the next two experiments. The

constant L was chosen to be the largest integer such that (12) is satis�ed. Figure 2

shows the generated points for the SAA with = 0 along with the upper bounds.

It is harder to construct upper bounds with > 0. The di�culty lies in an appro-
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priate choice of the parameters since we cannot have very large values ofM or N when

solving binary programs. Our experience shows that it is notsigni�cantly better than

the bounds obtained with = 0.

4 A Blending Problem

Let us consider a second example of chance constrained problems. Suppose a farmer

has some crop and wants to use fertilizers to increase the production. He hires an

agronomy engineer who recommends 7g of nutrient A and 4g of nutrient B . He has

two kinds of fertilizers available: the �rst has! 1 g of nutrient A and ! 2 g of nutrient B

per kilogram. The second has 1g of each nutrient per kilogram. The quantities! 1 and

! 2 are uncertain: we will assume they are (independent) continuous uniform random

variables with support in the intervals [1; 4] and [1=3; 1] respectively. Furthermore, each

fertilizer has a unitary cost per kilogram.

There are several ways to model this blending problem. A detailed discussion can

be found in [19], where the authors use this problem to motivate the �eld of stochastic

programming. We will consider a joint chance constrained formulation as follows:

min
x1 � 0;x2 � 0

x1 + x2 s.t. probf ! 1x1 + x2 � 7; ! 2x1 + x2 � 4g � 1 � �; (22)

26



wherex i represents the quantity of fertilizeri purchased,i = 1; 2, and � 2 [0; 1] is the

reliability level. The independence assumption allows us to convert the joint probability

in (22) into a product of probabilities. After some calculations, one can explicitly solve

(22) for all values of� . For � 2 [1=2; 1] the optimal solution and optimal value are

x �
1 =

18
9 + 8(1 � � )

; x�
2 =

2(9 + 28(1 � � ))
9 + 8(1 � � )

; v� =
4(9 + 14(1 � � ))

9 + 8(1 � � )
:

For � 2 [0; 1=2] we have

x �
1 =

9
11� 9(1 � � )

; x�
2 =

41� 36(1� � )
11� 9(1 � � )

; v� =
2(25� 18(1� � ))

11� 9(1 � � )
: (23)

Our goal is to show that we can apply the SAA methodology to joint chance con-

strained problems. We can convert a joint chance constrained problem into a problem

of the form (1) using the min (or max) operators. Problem (22)becomes

min
x1 � 0;x2 � 0

x1 + x2; s.t. probf minf ! 1x1 + x2 � 7; ! 2x1 + x2 � 4g � 0g � 1 � �: (24)
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It is possible to write the SAA of problem (24) as follows.

min
x1 � 0;x2 � 0

x1 + x2; (25a)

s:t : ui � ! i
1x1 + x2 � 7; i = 1; : : : ; N; (25b)

ui � ! i
2x1 + x2 � 4; i = 1; : : : ; N; (25c)

ui + Kz i � 0; i = 1; : : : ; N; (25d)

NX

i =1

zi � N; (25e)

zi 2 f 0; 1gN ; (25f)

where N is the number of samples,! i
1 and ! i

2 are samples from! 1 and ! 2,  2 (0; 1)

and K is a positive constant positive constant greater or equal than 7.

4.1 Numerical Experiments

We performed experiments similar to the ones for the portfolio problem so we will

present the results without details. In Figure 8 we generated approximations for prob-

lem (22) with � = 0:05 using the SAA. The sample points were obtained by solving a

SAA with  = 0:025 and sample sizesN = 60; 70; : : : ; 150. The Campi-Garatti (18)

suggested value isN � = 130.We included the e�cient frontier for problem (22). We will
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not show the corresponding Figures for other values of , but the pattern observed in

the portfolio problem repeated: with = 0 almost every point was feasible but far from

the optimal, with  = � = 0:05 almost every point was infeasible. The parameter choice

that generated the best candidate solutions was = �= 2 = 0:025. We also show the

N -plot for the SAA of problem (22). We tested values in the range 0; 0:005; : : : ; 0:05

and N = 60; 70; : : : ; 150. We included a plane representing the optimal value of problem

(22) for � = 0:05, which is readily obtained by applying formula (23).

In accordance with Figure 7, in Figure 9 the best candidate solutions are the ones

with  around 0:025. Even for very small sample sizes we have feasible solutions (dark

gray triangles) close to the optimal plane. On the other hand, this experiment gives

more evidence that the SAA with = 0 is excellent to generate feasible solutions (dark

gray triangles) but the quality of the solutions is poor. As shown in Figure 9, the high

peaks associated with = 0 persist for any sample size, generating points far form the

optimal plane. In agreement with Figure 7, the candidates obtained for  > � are in

their vast majority infeasible.
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5 Conclusions

We have discussed chance constrained problems with a singleconstraint and proved

convergence results about the SAA method. We applied the SAAapproach to a portfolio

chance constrained problem with random returns. In the normal case, we can compute

the e�cient frontier and use it as a benchmark solution. Experiments show that the

sample size suggested by [17] was too conservative for our problem: a much smaller

sample can yield feasible solutions. We observed that the quality of the solutions

obtained was poor. Similar results were obtained for the lognormal case, where upper

bounds were computed using a method developed in [8].

As another illustration of the use of the SAA method, we presented a two dimen-

sional blending problem and modeled it as a joint chance constrained problem. We use

the problem as a benchmark to test the SAA approach and also toshow how one can

use the SAA methodology to approximate joint chance constrained problems.

In both cases we observe that the choice = �= 2 gave very good candidate solutions.

Even though it generated more infeasible points if comparedto the choice = 0, the

feasible ones were of better quality. Using theN -plot we were able to con�rm these

empirical �ndings for our two test problems. Figures 7 and 9 tells us that relatively small

sample sizes (e.g, if compared to Campi-Garatti estimates)can yield good candidate
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solutions. This is extremely important since for > 0 the SAA problem is an integer

program and large values ofN could quickly make the SAA approach intractable. Upper

bounds were also constructed for the portfolio problem using the SAA with  = 0 by

solving several continuous linear programs. Since no closed solution is available for

the portfolio problem with lognormal returns, having an upper bound is an important

information about the variability of the solution.

We believe that the SAA methodology is suitable to approximate chance constrained

problems. Such problems are usually impossible to be solvedexplicitly and the pro-

posed method can yield good candidate solutions. One advantage of the method is

the fairly general assumption on the distribution of the random variables of the prob-

lem. One must only be able to sample from the given distribution in order to build

the corresponding SAA program. The main contribution of thepaper is to present the

method and its theoretical foundations and to suggest parameter choices for the actual

implementation of the procedure.

31



References

1. Charnes, A., Cooper, W. W., Symmonds, G.H.: Cost horizonsand certainty equiva-

lents: an approach to stochastic programming of heating oil. Manag. Sci.4:235{263

(1958)

2. A. Pr�ekopa.: Stochastic Programming. Kluwer Acad. Publ., Dordrecht, Boston

(1995)

3. Dupa�cov�a, J., Gaivoronski, A., Kos, Z., Sz�antai, T.: Stochastic programming in

water management: a case study and a comparison of solution techniques. Eur. J.

Oper. Res.52:28{44 (1991)

4. Henrion, R., Li, P., M•oller, A., Steinbach, S. G., Wendt,M., Wozny, G.: Stochastic

optimization for operating chemical processes under uncertainty. In Grtschel, M.,

Krunke, S., Rambau, J., (editors), Online optimization of large scale systems, pages

457{478, Springer (2001)

5. Henrion, R., M•oller, A.: Optimization of a continuous distillation process under

random inow rate. Comput. Math. Appl. 45:247{262 (2003)

6. Dentcheva, D., Pr�ekopa, A., Ruszczy�nski, A.: Concavity and e�cient points of dis-

crete distributions in probabilistic programming. Math. Program. 89:55{77 (2000)

32



7. Luedtke, J., Ahmed, S., Nemhauser, G.L.: An integer programming approach for

linear programs with probabilistic constraints. To appearin Math. Program (2007)

8. Nemirovski, A., Shapiro, A.: Convex approximations of chance constrained pro-

grams. SIAM J. on Optimiz. 17(4):969{996 (2006)

9. Shapiro, A.: Monte carlo sampling methods. In A. Ruszczy�nski and A. Shapiro,

editors, Stochastic Programming, volume 10 ofHandbooks in OR & MS, pages

353{425. North-Holland Publishing Company (2003)

10. Atlason, J., Epelman, M.A., Henderson,S. G.: Optimizing call center sta�ng using

simulation and analytic center cutting plane methods. Manag. Sci. 54:295{309

(2008)

11. Luedtke, J., Ahmed, S.: A sample approximation approachfor optimization with

probabilistic constraints. SIAM J. Optimiz. 19:674{699 (2008)

12. Rockafellar, R.T., Wets,R.J.-B.: Variational Analysis. Springer, Berlin (1998)

13. Artstein, Z., Wets, R.J.-B.: Consistency of minimizersand the slln for stochastic

programs. J. Convex Anal.2:1{17 (1996)

14. Cherno�, H.: A measure of asymptotic e�ciency for tests of a hypothesis based on

the sum observations. Annals Math. Stat.23:493{507 (1952)

33



15. Markowitz, H.: Portfolio selection. J. Financ.7:77{97 (1952)

16. Wang, Y., Chen, Z., Zhang, K.: A chance-constrained portfolio selection problem

under t-distrbution. Asia Pac. J. Oper. Res.24(4):535{556 (2007)

17. Campi, M.C., Garatti, S.: The exact feasibility of randomized solutions of robust

convex programs. Optimization online (www.optimization-online.org) (2007)

18. Cala�ore, G., Campi, M.C.: The scenario approach to robust control design. IEEE

T. Automat. Contr. 51:742{753 (2006)

19. Klein Haneveld, W.K., van der Vlerk, M.H.: Stochastic Programming (lecture

notes), (2007).

20. Law, A., Kelton, W.D.: Simulation Modeling and Analysis, Industrial Engineering

and Management Science Series. McGraw-Hill Science/Engineering/Math (1999).

34



0.998 1.004 1.010

0.80

0.85

0.90

0.95

1.00

Figure 1: Normal returns for = 0.
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Figure 2: Lognormal returns, = 0.
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Figure 3: Normal returns, = 0:05.
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Figure 4: Lognormal returns, = 0:05.
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Figure 5: Normal returns, = 0:10.
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Figure 6: Lognormal returns, = 0:10.
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Figure 7: N -plot for the portfolio problem with normal returns.
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Figure 8: Blending problem, = 0:025.
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Figure 9: N -plot (blending problem).
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