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Abstract

We study sample approximations of chance constrained prol@ms. In partic-
ular, we consider thesample average approximation(SAA) approach and discuss
the convergence properties of the resulting problem. We diuss how one can

use the SAA method to obtain good candidate solutions for chace constrained
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problems. Numerical experiments are performed to correcyl tune the parameters
involved in the SAA. In addition, we present a method for congructing statistical
lower bounds for the optimal value of the considered problermand discuss how one
should tune the underlying parameters. We apply the SAA to two chance con-
strained problems. The rst is a linear portfolio selection problem with returns
following a multivariate lognormal distribution. The second is a joint chance

constrained version of a simple blending problem.

Key words : Chance constraints, Sample average approximation, Paotio selection.

1 Introduction

We consider chance constrained problems of the form
rgi{lf(x); st:prob G(x; ) O 1 (1)
X

Here X R", is a random vectIJJ with probability distribution P supported on a
set RY, 2 (0;1),f :R"! R is a real valued function andG : R" I R™,

Chance constrained problems were introduced in Charnes, @per and Symmonds[[1]

lWe use the same notation to denote a random vector and its particular realization. Which of
these two meanings will be used in a particular situation wil be clear from the context.



and have been extensively studied since. For a theoreticahdkground we may refer

to Pekopa [2] where an extensive list of references can beuhd. Applications of

chance constrained programming include, e.g., water mareagent [3] and optimization

of chemical processe5s][4],[5].

Although chance constraints were introduced almost 50 yeamago, little progress

was made until recently. Even for simple function§( ; ), e.g., linear, problem 1) may

be extremely di cult to solve numerically. One of the reasos is that for a givenx 2 X

the quantity probf G(x; ) Ogis hard to compute since it requires a multi-dimensional

integration. Thus, it may happen that the only way to check fasibility, of a given

point x 2 X, is by Monte-Carlo simulation. In addition, the feasible seof problem

(@ can be nonconvex even if the seX is convex and the functionG(x; ) is convex

in Xx. Therefore the development went into two somewhat di erentdirections. One

is to discretize the probability distribution P and consequently to solve the obtained

combinatorial problem (see, e.g., Dentcheva, Pekopa anBuszczynski [6], Luedtke,

Ahmed and Nemhauser |7]). Another approach is to employ cogw approximations of

chance constraints (cf., Nemirovski and Shapir©1[8]).

In this paper we discuss thesample average approximationfSAA) approach to

chance constrained problems. Such an approximation is obtad by replacing the actual



distribution in chance constraint by an empirical distribuion corresponding to a random

sample. This approach is well known for stochastic programsith expected values

objectives [9]. SAA methods for chance constrained problenmave been investigated

in [10] and [11].

The remainder of the paper is organized as follows. In Secti@ we provide theoret-

ical background for the SAA approach, showing convergencetbe optimal value of the

approximation to the optimal value of the true problem. In adlition, following [8] we

describe how to construct bounds for the optimal value of chae constrained problems

of the form (). In Section[3, we present a chance constraingartfolio selection prob-

lem. We apply the SAA method to obtain upper bounds as well asandidate solutions

to the problems. In addition we present several numerical pgriments that indicate

how one should tune the parameters of the SAA approach. In Sen 4 we present

a simple blending problem modeled as a joint chance constrad problem. Sectiori b

concludes the paper and suggests directions for future raseh.

We use the following notation throughout the paper. The intger part of number

a2 R is denoted bybac. By ( z) we denote the cumulative distribution function (cdf)

of standard normal random variable and byz the corresponding critical value, i.e.,



(z)=1 ,for 2 (0;1),

P : :
B(k;p;N) == 15 Y p@ pV T k=0;:5N; (2)

denotes the cdf of binomial distribution. For setA; B R" we denote by

D(A;B) := sup,, 4 dist(x; B) (3)

the deviation of set A from setB.

2 Theoretical Background

In order to simplify the presentation we assume in this sectn that the constraint

function G : R" I Risreal valued. Of course, a number of constraints;(x; ) O,

G(x; ):= max Gi(x; ) O

Such operation of taking maximum preserves convexity of fations G;( ; ). We assume

that the set X is closed the function f (x) is continuousand the function G(x; ) is a



Caratleodory function, i.e., G(x; ) is measurable for everx 2 R" and G( ; ) continuous
fora.e. 2 .

Problem (@) can be written in the following equivalent form
minf (x); st: p(x) (4)
x2 X

where

p(x) := PTG(x; ) > Og:

Now let !;:::; N be anindependent identically distributed(iid) sample of N real-
izations of random vector and Py := N 1! J.Nzl (1) be the respective empirical
measure. Here ( ) denotes measure of mass one at pointand hencePy is a discrete
measure assigning probability 2N to each point 1, j =1;:::;N. The sample average
approximation py (x) of function p(x) is obtained by replacing the “true' distribution P

by the empirical measurePy. That is, pn(X) := PyfG(X; ) > 0g: Let g1y : R! R

be the indicator function of (01 ), i.e.,

8

E 1, ift>0;
Jo:1 (1) =
3

o ift O



Then we can write that p(x) = Ep[1.1 )(G(X; ))] and

X :
o) = Eny llon (G06 M= o dony 606 )
j=1

That is, Pn(X) is equal to the proportion of times that G(x; 1) > 0. The problem,

minf (x); st:pu(x) (5)

We refer to problems [(4) and [(b) as the true and SAA problemsgespectively, at the
respective signi cance levels and . Note that, following [11], we allow the signi cance
level 0 of the SAA problem to be di erent from the signi cance level of the true
problem. Next we discuss the convergence of a solution of tB&A problem (8) to that
of the true problem (4) with respect to the sample siz&l and the signi cance level .
A convergence analysis of the SAA probleni](5) has been given[11]. Here we present
complementary results under slightly di erent assumptios.

Recall that a sequencéd(x) of extended real valued functions is said tepiconverge

to a function f (x), written f, !° f, if for any point x the following two conditions hold:



() for any sequencexy, converging tox one has

liminf fe(x) — f (0); (6)

(ii) there exists a sequence, converging tox such that

limsupfe(xk) f(X): (7)
ki1

Note that by the (strong) law of large numbers (LLN) we have that for any x, pn (X)

converges w.p.1 tq(x).

Proposition 2.1 Let G(x; ) be a Caratreodory function. Then the functiong(x) and
Pn (X) are lower semicontinuous, angy !° p w.p.1. Moreover, suppose that for every
X 2 X the setf 2 . G(x; ) = 0g has P-measure zero, i.e.,G(x; ) 6 0 w.p.1.
Then the functionp(x) is continuous at everyx 2 X and fy (X) converges tq(x) w.p.1

uniformly on any compact setC X, i.e.,

supjpn(X)  p(x)j! O wp:l asN!1 (8)
x2C

Proof. Consider function (x; ):=1 .1y G(x; ) . Recall thatp(x) = Ep[ (X; )]



and pn(x) = Epy[ (X; )]. Since the function .1 () is lower semicontinuous and
G(; ) is a Carathreodory function, it follows that the function (x; ) is random lower
semicontinuous (see, e.g.,[112, Proposition 14.45]). Then by Fatou's lemnvee have

for any x 2 R",

liminfy «p(x) =liminf ,, « R (x; )dP()

R R
liminf,, x (x; )dP() (x; )dP( )= p(x):

This shows lower semicontinuity ofp(x). Lower semicontinuity of gy (x) can be shown
in the same way.

The epiconvergencgy*I° p w.p.1 is a direct implication of Artstein and Wets [13,
Theorem 2.3]. Note that, of coursej (x; )j is dominated by an integrable function
sincej (x; )j 1. Suppose, further, that for everyx 2 X, G(x; ) 6 0 w.p.1, which
implies that (; ) is continuous atx w.p.1. Then by the Lebesgue Dominated Con-

vergence Theorem we have for any2 X,

R
limy «p(x) =limy «  (x; )dP()

R R
= limy « (x; )dP( )= (x; )dP( )= p(x);

which shows continuity ofp(x) at x = x. Finally, the uniform convergence [(B) follows

2Random lower semicontinuous functions are called normal itegrands in [12].
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by a version of the uniform law of large numbers (seé, [9, Progition 7, p.363]).1

By lower semicontinuity of p(x) and py (x) we have that the feasible sets of the
“true’ problem (4) and its SAA counterpart (8) are closed sst Therefore, if the set
X is bounded (i.e., compact), then problemd{4) and{5) have nempty sets of opti-
mal solutions denoted, respectively, a§ and Sy, provided that these problems have
nonempty feasible sets. We also denote By and #y the optimal values of the true
and the SAA problems, respectively. The following result slws that for = , under
mild regularity conditions, £y and &y converge w.p.1 to their counterparts of the true
problem.

We make the following assumption.

(A) There is an optimal solution x of the true problem (4) such that for any” > 0

there isx 2 X with kx xk " and p(x) <

In other words the above condition (A) assumes existence ofsequencefxy,g X
converging to an optimal solutionx 2 S such that p(xx) < for all k, i.e., x is an

accumulation point of the setfx 2 X : p(x) < g@.

Proposition 2.2  Suppose that the signi cance levels of the true and SAA prebis are

the same, i.e., = |, the setX is compact, the functionf (x) is continuous, G(x; ) is

10



a Caratheodory function, and condition (A) holds. Thenfy ! # andD(Sy:;S)! O

w.p.l asN !'1

Proof. By the condition (A), the set S is nonempty and there isx 2 X such that
p(x) < . We have that p\ (x) converges top(x) w.p.1. Consequentlyp (x) < , and
hence the SAA problem has a feasible solution, w.p.1 fbr large enough. Sincen\ )
is lower semicontinuous, the feasible set of SAA problem israpact, and henceSy is
nonempty w.p.1 forN large enough. Of course, ik is a feasible solution of an SAA
problem, thenf (x) #y. Since we can take such point arbitrary close tox and f ()
IS continuous, we obtain that

imsup#y f(x)= # wp:l (9)

N1

Now let Ry 2 Sy, ie., Ay 2 X, Py (RN) and #y = f (&v). Since the setX is
compact, we can assume by passing to a subsequence if necgs$kat %, converges to

a point x 2 X w.p.1. Also we have thatpd !° p w.p.1, and hence

Iimlinf Pn (Rn)  p(x) wip:l:

It follows that p(x) and hencex is a feasible point of the true problem, and thus

11



f(x) #.Alsof(®y)! f(x)w.p.1, and hence

lim inf By # wpl (10)

It follows from (@) and (@Q) that #y ! # w.p.1. It also follows that the pointx is an

optimal solution of the true problem and then we havéd(Sy;S)! 0 w.p.1.1

Condition (A) is essential for the consistency offy and Sy. Think, for example,
about a situation where the constraintp(x) de nes just one feasible pointx such
that p(x) = . Then arbitrary small changes in the constrainpg (x) may result in
that the feasible set of the corresponding SAA problem bec@as empty. Note also that
condition (A) was not used in the proof of inequality [ID). Ve cation of condition (A)
can be done by ad hoc methods.

Suppose now that > . Then by Proposition[2.2 we may expect that with increase
of the sample sizeN, an optimal solution of the SAA problem will approach an optnal
solution of the true problem with the signi cance level rather than . Of course,
increasing the signi cance level leads to enlarging the faiale set of the true problem,
which in turn may result in decreasing of the optimal value othe true problem. For a

point x 2 X we have thatpy (x) , i.e., X is a feasible point of the SAA problem, i

12



no more than N times the event \G(x; 1) > 0" happens inN trials. Since probability

of the event \G(x; ') > 0" is p(x), it follows that

prob Py (X) =B bN ¢ p(x);N : (11)

Recall that by Cherno inequality [L4], for k > Np,

B(kip;N) 1 exp N(k=N p)*=(2p)

It follows that if p(x) and > ,thenl prob py(X) approaches zero at
a rate of exp( N ), where :=( )2=(2 ). Of course, ifx is an optimal solution
of the true problem andx is feasible for the SAA problem, thery  # . That is, if
>, then the probability of the event \#y  # " approaches one exponentially fast.
Similarly, we have that if p(x) = and < , then probability that x is a feasible

point of the corresponding SAA problem approaches zero exptially fast (cf., [11]).

In order to get a lower bound for the optimal value# we proceed as follows. Let

13



us choose two positive integerM and N, and let

n =B bNc ;N

and L be the largestinteger such that

B(L 1, n:M) (12)

random vector . For each sample solve the associated optimization problem

X .
rr;i)pf (x); st: To:1y G(x; ™) N; (13)
X
j=1
and hence calculate its optimal value?®, m = 1;:::;M. That is, solve M times the

corresponding SAA problem at the signi cance level. It may happen that problem

(@3) is either infeasible or unbounded from below, in whichase we assign its optimal

the random variable#y , where#y is the optimal value of the respective SAA problem

at signi cance level . Next we rearrange the calculated optimal values in the nowed

14



creasing order as followd) £ ie., A7 is the smallest,#2is the second

a lower bound of the true optimal value# . It is possible to show that with probability
atleast 1 , the random quantity ﬁ(NL) is below the true optimal value# , i.e., ﬁ(NL)
is indeed a lower bound of the true optimal value with con dece at least 1 (se

[8]). We will discuss later how to choose the constantd; N and

3 A Chance Constrained Portfolio Problem

Consider the following maximization problem subject to a sgle chance constraint

maxE r'x ; st:prob r'x v 1 (14)
X

Here x 2 R" is vector of decision variablesy 2 R" is a random (data) vector (with
known probability distribution), v2 Rand 2 (0;1) are constants,e is a vector whose

components are all equal to 1 and

X =fx2R":e'x=1;x O0Og

3In [8] this lower bound was derived for = 0. It is straightforward to extend the derivations to
the case of > 0.
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Note that, of course,E r"x = 17X, wherer := E[r] is the corresponding mean vector.
That is, the objective function of problem

The motivation to study ([4) is the portfolio selection prolbem going back to
Markowitz [15]. The vector x represents the percentage of a total wealth of one dol-
lar invested in each ofn available assetsy is the vector of random returns of these
assets and the decision agent wants to maximize the mean natusubject to having a
return greater or equal to a desired level, with probability at least 1 . We note
that problem (L4) is not realistic because it does not incograte crucial features of
real markets such as cost of transactions, short sales, lovesd upper bounds on the
holdings, etc. However, it will serve to our purposes as axampleof an application of

the SAA method. For a more realistic model we can refer the rédar, e.g., to [16].

3.1 Applying the SAA

First assume thatr follows a multivariate normal distribution with mean vecta r and
covariance matrix , written r N (f; ). Inthatcase r'x N T1'x;x" x , and
hence (as it is well known) the chance constraint in_(14) canebwritten as a convex
second order conic constraint (SOCC). Using the explicit fo of the chance constraint,

one can e ciently solve the convex problem[(I4) for di erentvalues of . An e cient

16



frontier of portfolios can be constructed in an objective function Vae versus con dence
level plot, that is, for every con dence level we associate the optimal value of problem
([@4). The e cient frontier dates back to Markowitz [L5].

If r follows a multivariate lognormal distribution, then no clesed form solution is

available. Thesample average approximatio(SAA) of problem (14) can be written as

maxr' x; st: pn(X) (15)
x2X

where

X
Pu(X) = N ! To:1)y(v riTX)
i=1

and 2 [0;1). The reason we use instead of is to suggest that for a xed , a

di erent choice of the parameter in (I5) might be suitable. For instance, if =0,

then the SAA problem (I%) becomes the linear program

max T'x; st rix v; i=1;:::;N: (16)
x2X

A recent paper by Campi and Garatti[17], building on the worlof Cala ore and Campi

[18], provides an expression for the probability of an optial solution Xy of the SAA

17



problem (8), with = 0, to be infeasible for the true problem [(#). That is, under he
assumptions that the setX and functionsf () and G(; ), 2 ; are convex and that

w.p.1 the SAA problem attains unique optimal solution, we hee that for N n,

probfp(&y) > g B(n  1;;N); (17)

and the above bound is tight. Thus, for a con dence parameter 2 (0; 1) and a sample

sizeN such that

B(n 1;;N ) ; (18)

the optimal solution of problem [16) is feasible for the coesponding true problem([(14)
with probability at least 1

For > 0, problem (I%) can be written as the mixed-integer linear pgram

max  T'X; (19a)
X;Z
st rIx+vz v, (19Db)
X
zz N; (19c)
i=1
x2X;z2f0;1g"; (19d)

18



with one binary variable for each sample point. To see that pblems [I5) and [IP) are

of (I9) we havez; 1.1 (v r{x), and so from the second constraint of {19) we have

X
Nt z N Moiy(v rx)="puX): (20)

Thus x is feasible to [I5) and has the same objective value as Inl(1@onversely, letx

Given a xed in (I4), it is not clear what are the best choices of and N for (19).
We believe it is problem dependent and numerical investigans will be performed with
di erent values of both parameters. We know from Propositin [Z2 that, for = the
larger the N the closer we are to the original problem[{14). However, theumber of
samplesN must be chosen carefully because problem {19) is a binary pfem. Even

moderate values o can generate instances that are very hard to solve.

3.2 Finding Candidate Solutions

First we perform numerical experiments for the SAA method wh = O (problem (G))
assuming thatr N (F; ). We considered 10 assets i = 10) and the data for the

19



estimation of the parameters was taken from historical mohty returns of 10 US major
companies. We wrote the codes in GAMS and solved the problemsing CPLEX 9.0.
The computer was a PC with an Intel Core 2 processor and 2GB ofAR/.

Letus x =0:10and = 0:01. For these values, the sample size suggested by
([@8) isN = 183. We ran 20 independent replications of_ (16) for each oh¢ sample
sizesN = 30;40;:::;200 and forN = 183. We also build ane cient frontier plot
of optimal portfolios with an objective value versusprobfrTx vg, wherex is the
optimal solution of problem (14) for a given . We show in the same plot (Figur&ll) the
corresponding objective function values angrolfr"®y  vg for each optimal solution
Ry found for the SAA (I8). To identify each point with a sample sie, we used a
gray scale that attributes light tones of gray to smaller saple sizes and darker ones
to larger samples. The e cient frontier curve is calculatedfor = 0:8;0:81:::;0:99
and then connected by lines. The vertical and horizontal les are for reference only:
they represent the optimal value for problem[(Z4) with = 0:10 and the 90% reliability
level, respectively.

Figure [1 shows interesting features of the SAA (IL6). Althouglarger sample sizes
always generate feasible points, the value of the objectifienction, in general, is quite

small if compared with the optimal value 1004311 of problem[{14) with =0:10. We

20



also observe the absence of a convergence property: if weease the sample size, the
feasible region of problem (16) gets smaller and the approxation becomes more and
more conservative and therefore suboptimal. The reason isat for increasingly large
samples the conditionr x v for all i approaches the conditiorprotfr™x  vg = 1.

We performed similar experiments for the lognormal case. Feach point obtained
in the SAA, we estimated the probability by Monte-Carlo tecmiques. The reader is
referred to [20] for detailed instructions of how to generatsamples from a multivariate
lognormal distribution. Since in the lognormal case one cant compute the e cient
frontier, we also included in Figure 2 the upper bounds for = 0:02; :: :; 0:20, calculated
according to (12). The detailed computation of the upper bawds will be given in the
next subsection.

In order to nd better candidate solutions for problem (14),we need to solve the
SAA with > 0, (problem (19)), which is a combinatorial problem. Sincew portfolio
problem is a linear one, we still can solve problem (15) e cigly for a moderate number
(e.g., 200 constraints) of instances. We performed testsr fproblem (15) with both
distributions, xing = 0:05 and 010 and changing\N .

The best candidate solutions to (14) were obtained with = 0:05. We considered

di erent sample sizes from 30 to 200. Although several poistare infeasible to the
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original problem, we observe in Figures 3 and 4 that whenevarpoint is feasible it is
close to optimal solution in the normal case or to the upper lhnmd under lognormality.
For = 0:10, almost all generated points were infeasible in both caseas seen in
Figures 5 and 6.

To investigate the di erent possible choices of and N in problem (19), we created
a three dimensional representation which we will callN -plot. The domain is a dis-
cretization of values of and N, forming a grid with pairs (;N ). For each pair we
solve an instance of problem (19) with these parameters antbsed the optimal value
and the approximate probability of being feasible to the oginal problem (14). The
z-axis represents the optimal value associated to each pointthe domain in the grid.
Finally, we created a surface of triangles based on this graks follows. Leti be the
index for the values of and| for the values ofN. If candidate points associated with
grid members (;j );(i+1;j)and (i;j +1)or (i+1;j+1);(i+1;j)and(i;j +1) are
feasible to problem (14) (with probability greater than or gual to (1 )), then we
draw a dark gray triangle connecting the three points in themace. Otherwise, we draw
a light gray triangle.

We created a N -plot for problem (14) with normal returns. The result can beseen

in Figure 7, where we also included the plane corresponding the optimal solution
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with = 0:10. The values for parameter were Q0:01;0:02:::;0:10 and forN =

30,40,50;:::;200. There are several interesting features of Figure 7 to loéscussed.

First, note that any xed , small sample sizes tend to generate infeasible solutiongla

large samples feasible ones. As predicted by the results cin@pi and Garatti, when

= 0, large sample sizes generate feasible solutions, altighuthey can be seen to be

of poor quality judging by the low peaks observed in this regh. The concentration

of high peaks corresponds to values around =2 = 0:05 for almost all sample sizes,

including small ones (varying from 50 until 120). We generat di erent instances of

Figure 7 and the output followed the pattern described here.

Even though there are peaks in other regions, Figure 7 sugtgea strategy to obtain

good candidates for chance constrained problems: choosdose to = 2, solve instances

of SAA with small sizes oN and keep the best solution. This is fortunate because SAA

problems with > 0 are binary problems that can be hard to solve. Our experieac

with this problem and others is that this strategy works beter than trying to solve

large instances os SAA problems. Note that the choice= =2 is from our empirical

experience. In general this choice depends on the underlyiproblem.
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3.3 Upper Bounds

A method to compute lower bounds of chance constrained prehs of the form (1)
was suggested in [8]. We summarized that procedure at the enél Section 2 leaving
the question of how to choose the constants;M and N. Given ;M and N, it is
straightforward to specifyL: it is the largest integer that satis es (12). For a givenN,
the larger M the better because we are approximating the-th order statistic of the
random variable#. However, note thatM represents the number of problems to be
solved and this value is often constrained by computationdiimitations.

In [8] an indication of howN should be chosen is not given. It is possible to gain
some insight on the magnitude oN by doing some algebra in inequality (12). With

=0, the rstterm (i =0) of the sum (12) is

(21)

Approximation (21) suggests that for small values of we should takeN of order
O( Y. If N is much bigger than £ then we would have to choose a very largd in
order to honor inequality (12). For instance if =0:10, =0:01 andN = 100 instead

of N =1= =10or N =2= =20, we needM to be greater than 100000 in order to
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satisfy (12), which can be computationally intractable forsome problems. IfN = 200
then M has to be grater then 18, which is impractical for most applications.

In [11], the authors applied the same technique to generat®iinds on probabilistic
versions of the set cover problem and the transportation pbbem. To construct the
bounds they variedN and usedM =10 and L = 1. For many instances they obtained
lower bounds slightly smaller (less than 2%) or even equal the best optimal values
generated by the SAA. In the portfolio problem, the choicé = 1 generated poor upper
bounds as we will see.

Since problem (14) is a maximization problem, we calculategpper bounds xing

= 0:01 for all cases and by choosing three di erent values for thmnstantsL; M and
N. Firstwe xed L =1 and N = dl= e (solid line in Figure 2). The constantM was
chosen to satisfy the inequality (12). The results were notsisfactory, mainly because
M ended up being too small. Since the constaM de nes the number of samples from
¥\ and since our problem is a linear one, we decided to M = 1000. Then we chose
N = dl= e (dashed line) andd2= e (dotted line) in the next two experiments. The
constant L was chosen to be the largest integer such that (12) is satisle Figure 2
shows the generated points for the SAA with = 0 along with the upper bounds.

It is harder to construct upper bounds with > 0. The di culty lies in an appro-
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priate choice of the parameters since we cannot have verydarvalues oM or N when
solving binary programs. Our experience shows that it is natigni cantly better than

the bounds obtained with = 0.

4 A Blending Problem

Let us consider a second example of chance constrained peohd. Suppose a farmer
has some crop and wants to use fertilizers to increase the guxtion. He hires an
agronomy engineer who recommendsg7of nutrient A and 4g of nutrient B. He has
two kinds of fertilizers available: the rst has! ; g of nutrient A and! , g of nutrient B
per kilogram. The second has @ of each nutrient per kilogram. The quantities! ; and
I , are uncertain: we will assume they are (independent) contious uniform random
variables with support in the intervals [1 4] and [1=3; 1] respectively. Furthermore, each
fertilizer has a unitary cost per kilogram.

There are several ways to model this blending problem. A dekad discussion can
be found in [19], where the authors use this problem to motiteathe eld of stochastic
programming. We will consider a joint chance constrained fimulation as follows:

min - X3+ Xp S.it. prolf! (X3 + X, 7;'oXxg+ X, 49 1 (22)

X1 Ox2
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where x; represents the quantity of fertilizeri purchased,i =1;2, and 2 [0;1] is the
reliability level. The independence assumption allows us ttonvert the joint probability
in (22) into a product of probabilities. After some calculaibns, one can explicitly solve
(22) for all values of . For 2 [1=2;1] the optimal solution and optimal value are

‘= 18 . _20+281 ). . _40+14a ).
17 o+8(1 ) 72 9+8(1 ) '’ 9+8(1 )

For 2 [0; 1=2] we have

9 41 381 ) 225 181 ).

1T e )y T 1 e ) VT 11 o )

(23)

Our goal is to show that we can apply the SAA methodology to jat chance con-
strained problems. We can convert a joint chance constraidgroblem into a problem

of the form (1) using the min (or max) operators. Problem (22becomes

rro1in Ox1+ Xp; S.t. probfminf! ix; + X, 7;'Xx;+x, 49 O 1 : (24
X1 OX2
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It is possible to write the SAA of problem (24) as follows.

min X1+ X2 (252)
X1 Ox2 O

st: u !ixatxe 7, i=1;:05N; (25b)
u !hxi+x, 4 i=1;::5N; (25c¢)
u + Kz' 0 i=1;::0N; (25d)

X
Z N; (25e)

i=1

Z 2f0;1g"; (25f)

where N is the number of samples! | and !}, are samples from ; and!,, 2 (0;1)

and K is a positive constant positive constant greater or equal &#n 7.

4.1 Numerical Experiments

We performed experiments similar to the ones for the portfi problem so we will
present the results without details. In Figure 8 we generatlieapproximations for prob-
lem (22) with = 0:05 using the SAA. The sample points were obtained by solving a
SAA with = 0:025 and sample sizeBl = 60;70;:::;150. The Campi-Garatti (18)

suggested value isl = 130.We included the e cient frontier for problem (22). We will
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not show the corresponding Figures for other values of but the pattern observed in
the portfolio problem repeated: with = 0 almost every point was feasible but far from
the optimal, with = = 0:05 almost every point was infeasible. The parameter choice
that generated the best candidate solutions was = =2 = 0:025. We also show the
N -plot for the SAA of problem (22). We tested values in the range 00:005:::;0:05
andN =60;70;:::;150. We included a plane representing the optimal value ofqislem
(22) for =0:05, which is readily obtained by applying formula (23).

In accordance with Figure 7, in Figure 9 the best candidate kaions are the ones
with around 0025. Even for very small sample sizes we have feasible solns$i (dark
gray triangles) close to the optimal plane. On the other handthis experiment gives
more evidence that the SAA with =0 is excellent to generate feasible solutions (dark
gray triangles) but the quality of the solutions is poor. As Bown in Figure 9, the high
peaks associated with = 0 persist for any sample size, generating points far form &
optimal plane. In agreement with Figure 7, the candidates dhined for >  are in

their vast majority infeasible.
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5 Conclusions

We have discussed chance constrained problems with a singstraint and proved
convergence results about the SAA method. We applied the SAgpproach to a portfolio
chance constrained problem with random returns. In the noral case, we can compute
the e cient frontier and use it as a benchmark solution. Experiments show that the
sample size suggested by [17] was too conservative for ouolpgem: a much smaller
sample can yield feasible solutions. We observed that the ajity of the solutions
obtained was poor. Similar results were obtained for the lagrmal case, where upper
bounds were computed using a method developed in [8].

As another illustration of the use of the SAA method, we presged a two dimen-
sional blending problem and modeled it as a joint chance cdraned problem. We use
the problem as a benchmark to test the SAA approach and also &how how one can
use the SAA methodology to approximate joint chance constirged problems.

In both cases we observe that the choice= = 2 gave very good candidate solutions.
Even though it generated more infeasible points if compardd the choice = 0, the
feasible ones were of better quality. Using theN -plot we were able to con rm these
empirical ndings for our two test problems. Figures 7 and 9dlls us that relatively small

sample sizes (e.g, if compared to Campi-Garatti estimatespn yield good candidate
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solutions. This is extremely important since for > 0 the SAA problem is an integer

program and large values ol could quickly make the SAA approach intractable. Upper

bounds were also constructed for the portfolio problem uginthe SAA with =0 by

solving several continuous linear programs. Since no cldssolution is available for

the portfolio problem with lognormal returns, having an upgr bound is an important

information about the variability of the solution.

We believe that the SAA methodology is suitable to approxinta chance constrained

problems. Such problems are usually impossible to be solvexplicitly and the pro-

posed method can yield good candidate solutions. One advage of the method is

the fairly general assumption on the distribution of the radom variables of the prob-

lem. One must only be able to sample from the given distribuin in order to build

the corresponding SAA program. The main contribution of thepaper is to present the

method and its theoretical foundations and to suggest paragter choices for the actual

implementation of the procedure.
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