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ABSTRACT. The purpose of these notes is to present computational advances in the analysis of the hy-

drothermal scheduling problem studied in [2]. In the first part we briefly summarize the main results of the

original paper, stating the main theorems without proofs. In the second part we present the computer program

wxHSP, designed to obtain numerical solutions to the problem. The numerical routines are described and dis-

cussions about the implementation and efficiency of each one is included. We conclude with the application

of the geodesic routines to our case study, the El Cajón system in Honduras.

AMS (MOS) Subject Classification. 90B05, 90C26.

1. INTRODUCTION

The hydrothermal scheduling problem we will study consists in achieving the least costly operation of

a system with one hydro plant and several thermal plants. At each period, a given load has to be fulfilled by

the combined use of the hydro and thermal plants. We assume hydro plants are costless.

Hydrothermal scheduling has been studied extensively, both in theoretical and practical terms. Several

modelling issues have been addressed: long or short term scheduling; deterministic or stochastic parameters;

continuous and discrete time. Another important issue is how to model the hydro generation efficiency.

Several authors take it to be constant, simplifying the mathematics involved. We will consider a variable

production coefficient that takes into account the geometry of the reservoir.

In the first section we state the discrete version of our problem and discuss modelling issues concerning

the production coefficient ρ. In sequence we consider a continuous formulation obtained as the limit of the

discrete one, when the number of stages goes to infinity. Several results about the continuous model are stated

without proof. The reader is referred to the paper [ 2] for further details.

We then turn our attention to the computer program wxHSP. The program is a set of routines that

combines classical numerical optimization techniques such as gradient methods with procedures based on

the theory outlined in the first part of these notes. First we suggest a strategy to find a feasible solution to the

problem. We describe which numerical routines were implemented in the program as well as details of the

implementation.
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The method inspired by the theory developed in the first section is discussed and the data of our case

study, the honduran system of El Cajón is given. We compare the solution obtained by these methods with

classical ones and screenshots of the program are displayed to illustrate the exposition.

2. SUMMARY OF PREVIOUS RESULTS

In this section we give a mathematical description of the hydrothermal problem we will consider and

briefly state the main theoretical results associated with the model. The details and proofs can be found in the

original paper [2].

2.1. The discrete model. First we are going to consider a discrete model in the time interval [0, T ] with NS

stages (see Figure 1). The hydrothermal operation problem consists in determining the values of the outflow

qt and spillage st of a hydro plant as well as the generations gt,j of the thermal plants so that the load dt is

satisfied at each stage t with minimal cost. The initial volume v0 is given and the volume vt at each stage is

updated based on the positive inflow bt, the outflow qt and spillage st.
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FIGURE 1. Discretization of the interval [0, T ].

More concretely, we consider the problem

(2.1)

minimize
∑NS

t=1

∑NT
j=1 cj(gt,j) · Δτ

subject to ht +
∑NT

j=1 gt,j = dt,

ht = ρ(vt) · qt,

vt+1 = vt + bt · Δτ − qt · Δτ − st · Δτ , (hydro balance equation)

0 ≤ gt,j ≤ gj , 0 ≤ qt ≤ q, v ≤ vt+1 ≤ v, 0 ≤ st,

where NT is the number of thermal plants, Δτ is the time length of each stage and c j(·) is the cost function

for thermal plant j. Note that the amount of water in the reservoir is bounded between v and v, as well as

the thermal generations (bounded by g j) and the outflow (bounded by q). The hydro generation depends on

a production coefficient ρ, which is used to account for the shape of the reservoir. For simplicity, we suppose

that the thermal plants by themselves are able to generate the requested load.

Many authors consider ρ to be a constant, which is appropriate for hydro plants with large net heads

and it also simplifies the mathematics involved in the model. As indicated in the title of this work, we will

not use this assumption. A more suitable choice for hydro plants with large water mirrors, as the one in our

case study to be studied later in these notes, is to take ρ to be a log-concave function of the volume v t on the

reservoir.

The control variables of the problem are the outflow q t, the spillage st and the thermal generations gt,j ,

for t = 1, . . . , NS and j = 1, . . . , NT . The cost function will be assumed to be quadratic: c j(gt,j) =
cj · g2

t,j , cj a positive constant. The production coefficient is usually assumed to be a power function ρ(x) =
c · xα, α > 0, which is an example of a log-concave function. The major drawback of this choice of ρ is the

loss of convexity in the various formulations of the problem.
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It is possible to reformulate problem (2.1) in such a way that the only control variables are the outflow

qt and the spillage st. For each stage t, assuming a certain fixed value for the hydro generation h t, we define

the thermal load:

(2.2) kt = kt(vt, qt, dt) = dt − ht = dt − ρ(vt) · qt.

The idea is that since hydro generation does not incur in any costs, we must ask for optimal performance of

the thermal plants to meet the thermal load kt. Omitting the time dependence, the thermal plants operation

problem is

(2.3)

p(k) = minimize
∑NT

j=1 cj · g2
j

subject to
∑NT

j=1 gj = k,

0 ≤ gj ≤ gj .

Using (2.3), we can reformulate (2.1) using only qt and st as control variables. The new version of the

problem will be denoted by MNS and can be written as follows.

(2.4)

minimize
∑NS

t=1 p(dt − ρ(vt) · qt) · Δτ

subject to 0 ≤ dt − ρ(vt) · qt,

vt+1 = vt + bt · Δτ − qt · Δτ − st · Δτ (hydro balance equation)

0 ≤ qt ≤ q v ≤ vt+1 ≤ v, 0 ≤ st.

2.2. The continuous model. In order to obtain a continuous version of problem ( 2.4), we let the number of

steps NS go to infinity and consider the continuous analogues q, s, b, d defined in the whole interval [0, T ]:
they will be real bounded functions.

(2.5) 0 ≤ q(t) ≤ q, 0 ≤ s(t) ≤ s, v ≤ v(t) ≤ v and 0 ≤ b(t) ≤ b, t ∈ [0, T ].

It is convenient to assume that these functions are absolutely continuous, which implies that the fundamental

theorem of calculus is valid for all of them. The continuous version M∞ is written as

(2.6)

minimize
∫ T

0
p(d(t) − ρ(v(t)) · q(t)) dt

subject to 0 ≤ kt = dt − ρ(vt)qt,

v′(t) = b(t) − q(t) − s(t) (hydro balance equation)

0 ≤ q(t) ≤ q, 0 ≤ s(t) ≤ s, v ≤ v(t) ≤ v.

We call an admissible pair (q, s) ∈ (L∞([t0, t1]))2 an operation in the interval [t0, t1]. We do not have

convexity in the objective function. Nevertheless, the following result holds.

Theorem 2.1. The model M∞ admits an optimal admissible solution.

The proof can be found in [2].

2.3. Using the volume as control variable. Unsurprisingly, spillage should be avoided. The next Theorem

shows that we can reduce our search of optimal solution to the so called thrift operations:

Theorem 2.2. The model M∞ (2.6) admits an optimal solution. Furthermore, it may be taken to be thrifty,

that is, operations (q, s) for which the induced volume v is an absolutely continuous function and

1. for t ∈ [a, b], v(t) < v implies s(t) = 0 and

2. for t ∈ [a, b], v(t) = v implies q(t) = min{b(t) − v′(t), q, d(t)/ρ(v(t))}.
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Theorem 2.2 allows us to focus only on thrifty operations. They are very natural in the sense that

spillage will not occur if the reservoir is not full. More important, the existence of optimal thrifty operations,

that is, operations that achieve the minimum of M∞, leads us to consider a new formulation M v
∞, where the

only control variable is the volume v:

(2.7)

minimize
∫ T

0
p(k(t)) dt

subject to 0 ≤ k(t) = d(t) − ρ(v(t))min
{

b(t) − v′(t), q, d(t)
ρ(v(t))

}
,

b(t) − v′(t) ≥ 0
v ≤ v(t) ≤ v.

Note that the outflow can be recovered by q(t) = min {b(t) − v ′(t), q, d(t)/ρ(v(t))} and the spillage by

s(t) = b(t) − v′(t) − q(t). Thus, given a feasible operation v one can immediately convert it into a pair of

the form (q, s) by using these equations.

In a similar fashion, we can consider the discrete version of formulation ( 2.7).

(2.8)

minimize
∑NS

t=1 p(kt)

subject to 0 ≤ kt = dt − ρ(vt)min
{

bt − vt+1−vt

Δτ , q, dt

ρ(vt)

}
,

Δbt − (vt+1 − vt) ≥ 0
v ≤ vt ≤ v.

The importance of the discrete version of the hydrothermal problem with only the volume v t as a control

variable will be more clear when we move to the numerical results, specially the Aitken’s Double sweep

method.

2.4. Necessary conditions for optimality. In this section we will characterize local optimality conditions

for problem M v
∞ in an interval [a, b]. If the reservoir is not full the hydro balance equation simplifies to

v′(t) = b(t) − q(t) because there is no spillage. We then take the function w(t) = v ′(t) as our control

variable instead of v(t). Among the functions w(t) that satisfies

(2.9)
∫ b

a

w(t) dt = v(b) − v(a),

we want to find the one that minimizes the cost functional

(2.10) F (w) =
∫ b

a

p

(
d(t) − ρ

(
v(a) +

∫ t

a

w(τ) dτ

)
· (−w(t) + b(t))

)
dt.

The next theorem gives necessary and sufficient conditions for a function w to be a critical point of functional

F subject to restriction (2.9).

Theorem 2.3. A function w satisfying (2.9) is a critical point of functional F defined in (2.10) if and only if

(2.11) p′ (k(t)) = p′ (k(a)) · exp
(
−

∫ t

a

ρ′(v(τ))
ρ(v(τ))

· b(τ)dτ

)
,

where k(t) = d(t) − ρ(v(t)) · (−w(t) + b(t)) is the thermal load at time t.

Theorem 2.3 does not say anything about the critical point. In principle it could be a local minima, a

local maxima or a saddle of functional F in the interval [a, b]. Surprisingly, a feasible solution of ( 2.11) is a

global minimum of F in [a, b].

Theorem 2.4. Let the production coefficient ρ be strictly log-concave. If the solution w of ( 2.11) is admissible

in the interval [a, b], then it is the global minimum of M v∞ in the interval.
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2.5. A shortest path problem. Theorem 2.3 suggests a strategy to find solutions for the hydrothermal prob-

lem. As long as we restrict ourselves to an interval [a, b] ⊂ [0, T ] and avoid the frontier (where the reservoir

is full), the solution of equation (2.11) gives us the optimal operation on the given interval. An operation can

be seen as a path in a t × v(t) space, so we can relate our problem to a shortest path problem.

Consider an open set R of the plane bounded by a simple curve Γ and let A and Z be points in the

closure R of R. We want to find the shortest path between A and Z in R. One strategy is to apply repeatedly

the following Proposition, whose proof is left to the reader.

Proposition 2.5. Let r be a straight line segment in R. Let R− r split into open path connected components

Rα, α = 1, 2, . . .. Let RA and RZ be components having A and Z in their closures, respectively. If the

component Rα0 does not meet RA and RZ , the shortest path does not intersect it.

As an example, consider Figure 2 where we show the shortest between points A and Z . The shaded

regions generated by the line segments r1 and r2 were ruled out using Proposition 2.5.

A

B
C

D E

Z

r2

r1

FIGURE 2. The shortest path between A and Z.

The hydrothermal problem (2.7) with the volume as a control variable can be seen as a shortest path

problem. Unlike the Euclidean case, the shortest path between points is given by Equation ( 2.11), as long as

the solution remains feasible. There are additional restrictions that may interrupt the validity of a solution:

The bounds b(t)− q ≤ v(t) ≤ b(t). Fortunately, the optimal performance in our case study was far from this

situation.

2.6. Discrete geodesics. We derived the optimality conditions for the continuous version of the problem on

Theorem 2.3. In a similar fashion, we can obtain the optimality conditions for the discrete problem ( 2.8),

where the only control variable is vt. More precisely, consider an interval [a, b] ⊂ [0, T ] and a discretization

in NS subintervals of equal size. A critical point (v2, . . . , vNS+1) of the functional

(2.12) F (v2, . . . , vNS+1) =
NS∑
t=1

p

(
dt − ρ(vt) ·

(
−vt+1 − vt

Δτ
+ bt

))
· Δτ

must satisfy

(2.13)
∂F

∂v2
= · · · =

∂F

∂vNS+1
= 0.

Rearranging equations (2.13), we have that a critical point (v1, . . . , vNS+1) of (2.12) must satisfy for t =
2, . . . , NS

(2.14) p′(kt−1) · ρ(vt−1) − p′(kt) · ρ(vt) = p′(kt) · ρ′(vt) ·
(
−vt+1 − vt

Δτ
+ bt

)
,
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where

(2.15) kt = dt − ρ(vt) ·
(
−vt+1 − vt

Δτ

)
.

Summing over t = 2, . . . , NS we obtain

p′(k1) · ρ(v1) − p′(kNS) · ρ(vNS) = −p′(k1) · ρ′(vt) ·
(
−v2 − v1

Δτ
+ b1

)
+(2.16)

NS∑
t=1

p′(kt) · ρ′(vt) ·
(
−vt+1 − vt

Δτ
+ bt

)
.(2.17)

Letting NS → ∞, or equivalently Δτ → 0, we have

(2.18) p′(k(a)) · ρ(v(a)) − p′(k(b)) · ρ(v(b)) =
∫ b

a

p′(k(τ)) · ρ′(v(τ)) · (−v′(τ) + b(τ))dτ,

which is equal to equation (2.11) up to a change of variables. Thus, we conclude that the limit of discrete

solutions in [a, b] of equations (2.13) (discrete geodesics) is the continuous geodesic in the given interval.

3. wxHSP: A NUMERICAL/GRAPHICAL FRAMEWORK FOR THE HYDROTHERMAL

SCHEDULING PROGRAM

The program wxHSP is written in C++ using the object-oriented programming features to model the

hydrothermal system. It has a graphical user interface built with the free multi-platform GUI library wxWid-

gets1. For this reason one can run the program in any operational system. A binary version for Microsoft

Windows c© can be downloaded from the address

http://www.mat.puc-rio.br/˜hjbortol/wxHSP/wxHSP.zip.

The Figure 3 shows a screenshot of the program. The window A is the main control panel where the user

can apply several numerical methods, load and save files and dump data for analysis. We now will describe

the numerical methods available in wxHSP. All algorithms use the volumes as control variables.

3.1. Obtaining a feasible operation. To start using the program we must compute an initial feasible opera-

tion. This is not a difficulty task under the hypothesis that the thermal plants are able to fulfill the total load

by themselves. Indeed, a feasible operation v [d]
t can be computed defining v [d]

1 = initial volume and, then,

recursively,

v[d]
t = max

{
v[d]

t−1 + bt · Δτ − min

{
q,

dt−1

ρ(v[d]
t−1)

}
· Δτ, v

}
, for t = 2, . . . , NS.

In this operation, all water available is readily used: the hydro plant operates under its maximal outflow (q) or

it generates all load being demanded, observing, of course, the restriction v [d]
t ≥ v. However, this approach

is too greedy in the sense that it does not worry about lack of water in the future. Consequently, we may end

up with high costs at later periods of the planning horizon, since a large percentage of the load will have to

be fulfilled almost exclusively by the thermal plants.

On the other hand, we may take a totally different approach where we always choose to save water for

the future using zero outflow, unless the reservoir is full. From this moment on, the hydro plant operates

using the outflow necessary to keep the reservoir full. Note that spillage may occur in this case. This defines

the admissible operation v [f]
t , where v[f]

1 = initial volume and

v[f]
t =

{
v[f]

t−1 + bτ · Δτ, if v[f]
t−1 + bτ · Δτ < v,

v, otherwise.

1http://www.wxwidgets.org.

http://www.mat.puc-rio.br/~hjbortol/wxHSP/wxHSP.zip
http://www.wxwidgets.org
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FIGURE 3. Program screenshot.

Actually, the strategy implemented in the program wxHSP uses a weighted combination of these two

feasible operations, where the weight is selected employing a bisection method. More precisely, we define

λB = 0 and λE = 1 and, then, we repeat the following steps a certain number of times: (1) Define λ M =
(λB + λE)/2. (2) Define vt = (1 − λM ) · v[f]

t + λM · v[d]
t for t = 1, . . . , NS + 1. (3) If the operation vt is

feasible, we set λB = λM , otherwise, we set λE = λM .

3.2. An unidimensional sequential method based on the Aitken’s double sweep scheme. Taking the

reservoir’s volumes as control variables has a great advantage: changes in a single control variable v t (for

2 ≤ t ≤ NS) affects only two terms of the total cost, namely,

(3.1) p

(
dt−1 − ρ(vt−1) · min

{
bt−1 − vt − vt−1

Δτ
, q,

dt−1

ρ(vt−1)

})
Δτ+

p

(
dt − ρ(vt) · min

{
bt − vt+1 − vt

Δτ
, q,

dt

ρ(vt)

})
Δτ.

So, for fixed values of vt−1 and vt+1, we may compute the optimal vt that minimizes the expression above.

This is done in wxHSP using the univariate Brent’s method plus a smart handling of the combinatorics in the

computation of the two “min”. Now, this procedure can be applied sequentially to improve a given feasible

operation: we start improving v2 for fixed values of v1 and v3, next we improve v3 for fixed values of v2

and v4, and so on. When we do a round trip (from v2 to vNS−1 and, then, back to v2), we get the double

sweep scheme suggested by Aitken. This algorithm is accessible in wxHSP through the button “improve

stage” in A .

Also, for fixed values of vt−1 and vt+1, the user can adjust the value of vt manually using the dialog

window B . The graph of the partial cost (expression (3.1)) as function of vt is shown in the window C .

3.3. Classical methods. Two classical strategies in optimization are implemented in the program: “follow

the gradient field” and “walk on the faces” buttons in A . The first basically chooses variables that are not
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active at any constraint and follow the direction of minus the gradient vector of the cost function until (at

least) one constraint becomes active. The second approach searches for active constraints and do a search in

the “interior” of the constraint, trying to improve the current solution. Since those two approaches are classic,

we give no further details and refer the reader to [4]. It is worth noting that, for the numerical experiments

realized so far, neither strategy provided substantial decrease in the overall cost.

3.4. Continuous geodesics. Continuous geodesics are constructed using the integro-differential equation

(2.11). To solve it numerically we employed a method analog to Heun’s method ([ 3]) (with quadratic con-

vergence). Methods with higher convergence, similar to Runge-Kutta for differential equations, could have

been used but the simpler method served well for our purposes. The integral∫ t

a

ρ′(v(τ))
ρ(v(τ))

· b(τ)dτ

was estimated with the trapezoid rule. The numerical computation of a continuous geodesic is available

through the button “geodesical methods” in A . When a geodesic produces a cut, this information is registered

in the window D .

3.5. Discrete geodesics. In section 2.6, we derive an expression (equation 2.14) for the critical points of the

functional F . From equation (2.14), we see that given vt−1 and vt, it is possible to obtain vt+1. Furthermore,

since p(k) defined in (2.3) is quadratic by parts, Equation (2.14) is quadratic by parts, that is, in order to find

vt+1 one must find the zeroes of a quadratic by parts equation.

Thus, ∂F/∂vt = 0 constitute a “triangular” nonlinear system: given v t−1 and vt, one can immediately

use equation ∂F/∂vt = 0 to obtain vt+1. That is how the routine works: the user gives initial data v0 and

v1 and the program calculates a sequence of volumes that solve the system ( 2.13). The routine terminates

when a feasible cut is obtained, when an infeasible operation is generated or when a quadratic equation has

no solution.

There is no particular reason to believe that discrete geodesics can help in any way. On section 2.6,

we proved a convergence result for discrete geodesics so one expects that discrete geodesic cuts may be of

some help. In fact we can see on the program that discrete geodesic cuts do provide meaningful insight on

the optimal solution by ruling out regions of the state space.

3.6. Computing a global solution. Theorem 2.2 guarantees the existence of an optimal solution. We know

by Theorem 2.4 that solutions of equation (2.11) are global solutions to the problem, as long as they remain

feasible. We do not have an algorithm in the sense of a list of steps predetermined, but the heuristics is to draw

geodesic cuts in the space [0, T ]× v(t) to at least reduce the feasible region. We applied this methodology to

our case study, the El Cajón system in Honduras.

The El Cajón system in Honduras consists of one hydro plant and eight thermal plants. The numerical

experiments were performed for a period of 4 years, broken onto NS = 48 months. The inflow b t and the

load dt are given for every stage. The initial volume of the reservoir is v 0 = 4.85898 109m3, the volume

bounds are v = 1.6841 109m3, v = 5.62527 109m3 and q = 204.8m3/s. The production coefficient was

taken to be ρ(x) = 2.17576 10−5
√

x MW/m3/s.

Using standard optimization techniques (Aitken double sweep method, steepest descent and projected

gradient evolutions on faces), an admissible operation was obtained, without spillages. The heuristics using

the cuts reduced the feasible region significantly. In window D of Figure 3, the discrete geodesic cuts

eliminated all the withe region, reducing our search for an optimal solution to the much smaller gray region.

The solution obtained with was 5% better than the one obtained with classical optimization techniques.
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In the wxHSP, the user can access this method by clicking on the button “geodesic methods” and then

selecting the (default) option “continuous geodesic”. The user can apply the method between any desired

stages by filling the “from/to stage” field. The step size and tolerance of the method can also be adjusted, as

well as the initial volume and derivative of v(t), which are the initial conditions for the numerical simulation.
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