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Abstract. In this paper we study the well-known linear system of differential equations in the plane. Instead of
considering a fixed matrixA, we assume that its entries are random variables and we argueabout the probability
of the origin be each of the fixed points, such as saddle, node,etc. The problem was suggested by Steven Strogatz
in his book [8]. We examine the problem not only from the theoretical viewpoint but also from the computational
side, using simulation to obtain approximate answers.
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1 Introduction
Phenomena involving continuous evolution in time are oftenmodeled using differential equations. The simplest and most

used models are built using linear differential equations with constant coefficients. Those equations can be easily reduced
to systems of linear differential equations of first order. The examples range from a simple harmonic oscillator [8] to an
oligopoly model where a number of firms compete for the market[7].

Precisely, we will consider two-dimensional homogeneous linear systems with constant coefficientsa,b,c,d:

ẋ = ax + by
ẏ = cx + dy

,

wherex = x(t), y = y(t), t is an independent variable and the dot denotes derivative. In matrix form we have

ẋ = Ax,

where

A =

(

a b
c d

)

and x =

(

x
y

)

.

Observe that(0, 0) is always a fixed point of this system. On basic courses of differential equations one studies the possible
configurations of the phase space associated with this system. Different situations occur according to the signs of the traceτ
of A, the determinant∆ of A and ofτ2 − 4∆. We say that a fixed point is asaddle if ∆ < 0 (figure 1). If∆ > 0, τ < 0
(respectivelyτ > 0) andτ2 − 4∆ > 0 we have astable (respectivelyunstable) node (figure 2). If ∆ > 0, τ < 0 (resp.
τ > 0) andτ2 − 4∆ < 0 we have astable (respectivelyunstable) spiral (figure 3) and ifτ = 0 we have acenter (figure 6).
Finally, there are the borderline cases: ifτ2 − 4∆ = 0 we have a degenerate node or a star (figures 4 and 5), dependingon
the number of eigenvectors (1 or 2) associated with the eigenvalue ofA. If ∆ = 0 we have non-isolated fixed points.
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Figure 1: saddle Figure 2: stable node

Figure 3: stable spiral Figure 4: degenerate node

Figure 5: star Figure 6: center

2 Random Matrices

The main purpose of this paper is to consider the matrixA that describes a two-dimensional linear system with random
entries, or a random matrix. More precisely, we say that a matrix A is arandom matrix when its entries are random variables
(r.v.) with a specified distribution. The problem we will study originated from an exercise of the book “Nonlinear Dynamics
and Chaos”, by Steven H. Strogatz [8]. Suppose we randomly pick a linear system. What’s the probability that the origin is,
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for instance, a stable spiral?
Consider the matrixA that describes a two-dimensional linear system with entriesX1, X2, X3 eX4, where each entry is

a r.v.:

A =

(

X1 X2

X3 X4

)

In this paper we will consider r.v. that are independent and identically distributed (i.i.d.). Randomly picking a linear system
means that one randomly picks from the r.v.Xi, i = 1, . . . , 4. Denoting by lower case the outcomes of the r.v. we have the
matrix

A =

(

x1 x2

x3 x4

)

,

which can easily be classified as one of the critical points. Note that some kinds of fixed point have zero probability of
occurrence if the r.v. is continuous. Take the center for example, which is characterized by havingτ = X1 + X4 = 0. We
have

P((0, 0) be a center) = P(τ = 0) = 0

The same holds for degenerate nodes and stars, which appear whenτ2 = 4∆.

3 The random variables U [−1, 1] and η(0, 1)

We will consider the cases where the r.v. are uniformly distributed in the interval[−1, 1], denoted byU [−1, 1] and
normally distributed with mean0 and variance1, denoted byη(0, 1). In both cases we have symmetric r.v. in the sense that
P(X < 0) = P(X > 0). This choice aims to give no privilege to any kind of fixed points. If we had chosen uniform r.v.
with values between0 and1 we would have only positive traces and for instanceP((0, 0) be a stable spiral) = 0. The r.v.
U [−1, 1] has density function given by

f(x) =

{

1
2 , if −1 ≤ x ≤ 1
0, otherwise .

The density of a r.v. normally distributedη(0, 1) is

g(x) =
1√
2π

e−x2/2 , −∞ ≤ x ≤ ∞.

The graphs of these density functions are shown below.

1−1

1/2

0

Figure 7: U(−1, 1)

0

Figure 8: η(0, 1)

The random matrix with entriesη(0, 1) appears frequently in the literature. This is not by chance:the normal r.v. has some
desired properties that make its choice natural. In order toprovide an example, notice that asking whether a2 × 2 matrixA
is a stable spiral is the same as asking if200A is a stable spiral. The problem is invariant to positive scalar multiplication.
This fact implies that trace, determinant andτ2 − 4∆ have the same signs forA and200A.
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Using this invariance we can provide a geometric interpretation to the original problem posed in section 2. Normalizing
the matrices so that they all have norm equal to1, we can think that instead ofR4 we are calculating probabilities in
S3 ⊂ R

4. Observe that if we had allowed multiplication by an arbitrary scalar we should consider the projective spaceP
3.

The invariance of multiplication by positive scalars also tells us that the regions inR4 corresponding to each type of behavior
of the origin are cones: for example, if(x0, y0, z0, w0) represents a matrix that is a stable node than the projectionof this
point inS3 represents the whole lineα(x0, y0, z0, w0), α ∈ R

+. We could ask ourselves what is the probability distribution
in the sphere. The answer is quite simple: it is uniform because for(x1, x2, x3, x4) ∈ S3 we have,

g(x1, x2, x3, x4) = f(x1)f(x2)f(x3)f(x4) =
1

√
2π

4 e(x2
1+x2

2+x2
3+x2

4) = K,

whereK is a constant equal to 1√
2π

4 e since (x1, . . . , x4) belongs toS3 and g(x1, x2, x3, x4) is the joint density of

Xi, i = 1, . . . , 4. This result obviously is valid for spheres of any radius.
What we have shown is that a normal independent distributionin R

4 implies an uniform distribution inS3. What about the
reciprocal of this fact? Which independent marginal densities should we consider in order to obtain a joint density function
constant on spheres? To save space, let’s run the calculations for 2 dimensions. We want to findf1(x) ef2(y) such that

fX,Y (x, y) = f1(x)f2(y) = h(x2 + y2),

wherefX,Y (x, y) is a two-dimensional density andf1(x) andf2(y) are one-dimensional densities. Assuming thatf , g and
h have at least one derivative we have

f ′
1(x)f2(y) = 2xh′(x2 + y2) and f1(x)f ′

2(y) = 2yh′(x2 + y2).

Equating both equations and assumingx andy different of zero gives us

f ′
1(x)

xf1(x)
=

f ′
2(y)

yf2(y)
= λ,

whereλ is an arbitrary constant because each term depends only on one of the variables. Solving the differential equation
we obtain expressions for the one-dimensional densities:

f1(x) = C1e
λx2

2 andf2(y) = C2e
λy2

2 ,

which are normal densities with zero mean variance depending onλ. Thus, if we want a joint density function that is constant
in spheres it suffices to choose one-dimensional normal r.v.for each direction.

4 Searching for a solution
For one of the fixed points, namely the saddle, it is possible to obtain explicitly the probability of occurrence in a simple

way. We will make one assumption:

P(Xi > 0) = P(Xi < 0) = 1/2, i = 1, . . . , 4. (1)
The two r.v. we are considering satisfy this condition. Remember that the origin is a saddle if and only if

P((0, 0) be a saddle) = P(∆ < 0) = P(X1X4 − X2X3 < 0) = P (Y1 < Y2),

whereY1 = X1X4 andY2 = X2X3. By constructionY1 andY2 are identically distributed. Besides, they inherit the property
described in 1:

P(Y1 > 0) = P(X1 > 0 , X4 > 0) + P(X1 < 0 , X4 < 0) =
1

2

1

2
+

1

2

1

2
=

1

2
.

Note that in the second passage we used thatXi, i = 1, . . . , 4 are independent. The calculation above implies that
P(Y1 < 0) = 1/2 by complementarity. The same holds forY2. Our problem now is to calculateP(Y1 < Y2). The
space of possible outcomes of(Y1, Y2) is ΩY1,Y2

= {(y1, y2) ∈ R
2 | y1 ∈ ΩY e y2 ∈ ΩY }, whereΩY is the

common sample space of bothY1 andY2. We want to know what is the probability of the pair(Y1, Y2) belongs to the
setT = {(y1, y2) ∈ R

2 | y1 < y2}. Figure 9 exemplifies the setT for theU [−1, 1] case:
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1

1

−1

−1
0

Figure 9: set T

Having picture 9 in mind it is easy to calculate the probability of the origin be a saddle:

P((0, 0) be a saddle) = P(Y1 < Y2) = P((Y1, Y2) ∈ T )

=
1

2
P(Y1 > 0, Y2 > 0) + P(Y1 > 0, Y2 < 0) +

1

2
P(Y1 < 0, Y2 < 0)

=
1

2

1

4
+

1

4
+

1

2

1

4
=

1

2

We will now analyze the unstable spiral. We saw in section 1 that the origin is an unstable spiral ifτ > 0, ∆ > 0 e
τ2 − 4∆ < 0. So, the probability that the origin is an unstable spiral is

P((0, 0) be an unstable spiral)

= P(τ > 0 , ∆ > 0 , τ2 − 4∆ < 0)

=

∫ ∫ ∫ ∫

D

f(x1, x2, x3, x4) dx1 dx2 dx3 dx4

=

∫ ∫ ∫ ∫

D

fX1
(x1)fX2

(x2)fX3
(x3)fX4

(x4) dx1 dx2 dx3 dx4,

wherefXi
(xi) are the densities of the independent random variablesXi, i = 1, ..., 4, f(x1, x2, x3, x4) is the joint probability

density ofX1, X2, X3, X4 andD = {(x1, x2, x3, x4) ∈ R | x1 +x4 > 0, x1x4−x2x3 > 0, (x1 +x4)
2−4(x1x4−x2x3) <

0}.
The integral above is not simple to solve because it is not easy to explicit the limits of integration. In fact, on calculus

courses multiple integrals are calculated using Fubini’s theorem, which change them into iterated integrals. Letg(x) and
h(x) be functions of one variable such that for allx we haveg(x) < h(x) andR be the region delimitated by the lines
x = a, x = b and by the graphsy = g(x) andy = h(x). Suppose we want to calculate the double integral of a function
f(x, y) in R. Then we would have

∫ ∫

R

f(x, y)dxdy =

∫ b

a

∫ h(x)

g(x)

f(x, y)dxdy.

In the general case what is often done is to divide the region and/or to change variables to fall into this case. Strange as
it may seem, this procedure is quite limited. For example, for a region defined byg(x, y) < 0, h(x, y) < 0 with g(x, y)
andh(x, y) polynomials of degree2, the integral may not be tractable, as for a region defined byg(x, y) < 0 with g(x, y)
polynomial of degree5. For this reason numerical methods are frequently employedto deal with integrals.

Before entering next section we would like to make a warning.One may have the temptation of solving this problem in
the caseU [−1, 1] by simply calculating the corresponding area of each of the critical points in the so calledstability diagram,
drawn in the figure 10.
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τ

∆

unstable nodes

unstable spirals

centers

stable spirals

saddle points

stable nodes

stars, degenerate nodes

Figure 10: stability diagram

Note that the rectangle[−2, 2]× [−2, 2] represents all possible traces and determinants obtained by randomly picking the
entries of matrixA according to a uniform distribution between−1 and1. Except for the saddle node, the quotients of each
of the areas divided by the area of the rectangle does not correspond to the probability of obtaining each critical point.This
happens because the axis of the figure areτ and∆ andthey are not uniform random variables in [−1, 1]. Let’s take a closer
look at the trace: it is the sumX1 + X4 of two U [−1, 1] r.v. What is the cumulative distribution of this sum? The answer is

P(τ ≤ x) =

{

(x+2
2 )2 if −2 < x < 0,

2(x+2
2 ) − ( x+1

2
)2

2 − 1 if 0 ≤ x ≤ 2.

A reference that helps to obtain the above formula is in [4]. To obtain a formula for the cumulative distribution of the sum
of n random variables uniformly distributed check [1], freely available at http://cgm.cs.mcgill.ca/ luc/rnbookindex.html.

5 Monte Carlo method
Monte-Carlo method is a largely used tool for obtaining approximations of problems that are hard to solve explicitly.

It consists of generating random numbers and keeping track of the fraction of them that satisfies a certain property. In the
context of our problem we will use Monte-Carlo to estimate the probabilities of(0, 0) be each of the fixed points. The
implementation is simple and can be done following the stepsdescribed below:

Initializing the variables Initialize variables saddle, unstable node, stable node, unstable spiral and stable spiral as zero
and define variables tau for trace, delta for determinant andtauDelta forτ2 − 4∆. Proceed as follows:

Step 1 GenerateX1, X2, X3, X4 with distributionU [−1, 1]) or η(0, 1).

Step 2 set tau =X1 + X4 , Delta =X1X4 − X2X3 and tauDelta =τ2 − 4∆.

Step 3 if delta< 0 set saddle = saddle+1 and return to step1.

Step 4 if tauDelta> 0 and tau> 0 (respectively tau< 0) set unstable node= unstable node+1 (respectively stable
node= stable node+1) and return to step1.

Step 5 if tau > 0 (respectively tau< 0) set unstable spiral= unstable spiral+1 (respectively stable spiral= stable
spiral+1) and return to step1.

The estimate for each of the probabilities is obtained dividing one of the variables (e.g. stable node) byn. We wrote a code
in Java and ran the program for various values ofn. Java language provides a very useful package called Random to deal
with the generation of random numbers. For example in this package it is possible to generate a random numberU between
0 and1. The routine described above was run for bothU [−1, 1] andη(0, 1).

Before analyzing the results obtained we will discuss an important issue concerning Monte-Carlo estimators: the variance
reduction techniques. The goal of these techniques is to avoid an excessive number of generations of the random variable,
reducing the sample variance of the Monte-Carlo estimatorX̄ . To provide an example we will consider the simplest variance
reduction technique, called the method of the antithetic variables. The idea is quite simple: instead of sampling the r.v.
sequentially one organizes the sample in pairs of r.v negatively correlated. More precisely: if the r.v. being sampled is X ,
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we choose a functionf(X) such thatX andf(X) have the same distribution but are negatively correlated. Thus, instead of
considering outcomes{Xi}n

i=1 we will consider{Wi}, whereWi = (Xi + f(Xi))/2.
A possible way of detecting the improvement of this technique is to execute the program until the sample standard

deviationS/
√

n, whereS2 =
P

(Xi−X̄)2

n−1 , is less than or equal to a pre-fixed valued and at least100 simulations were
performed. It is expected that a smaller sample is needed to achieve the desired level of confiability. More details can be
found in[6].

As expected, we obtained some gain using antithetic variables. Tables (1) and (2) show us the gain in using this method
in the case of the stable spiral. The random variable considered wasη(0, 1).

d number of simulations
1 100

0.1 100
0.01 1156
0.001 124187
0.0001 12499179

Table 1: Monte-Carlo simulation

d number of simulations
1 100

0.1 100
0.01 984
0.001 103740
0.0001 10357100

Table 2: Monte-Carlo simulation with antithetic variables

6 Results

Initially we performed100.000 experiments for each distribution on a Pentium4 with 2.00GHz. Remember that in each
experiment four random numbers were generated, representing the entries of the random matrix being considered. The results
are shown in table 3:

U [−1, 1] η(0, 1)
saddle 0.50105 0.49931

stable node 0.08881 0.10351
unstable node 0.08929 0.10351
stable spiral 0.15916 0.14563

unstable spiral 0.16169 0.14819

Table 3: Monte-carlo simulation for 100.000 experiments

The execution time was less than one second in both cases. We also run the program for1.000.000 experiments and the
results are in table 4.

The execution times were less than one second for theU [−1, 1] and about3 seconds for theη(0, 1). Note that the
approximated probability for the saddle is in accordance with the exact value1/2 derived in section 4.
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U [−1, 1] η(0, 1)
saddle 0.50036 0.49961

stable node 0.09054 0.10347
unstable node 0.09036 0.10336
stable spiral 0.15963 0.14656

unstable spiral 0.15910 0.14699

Table 4: Monte-Carlo simulation for 1.000.000 experiments

7 Conclusions and extensions
Random matrices appear in many different contexts. Given the computational power we have available nowadays it is

almost unavoidable to use simulation to obtain approximations and/or empirical evidence of problems involving random
matrices. Besides the problem considered here, there are many intriguing questions related to random matrices: given a
n×n random matrixA with entries distributed according to aη(0, 1) distribution, what is the probability that exactlyk of its
eigenvalues are real? What is the expected number of real eigenvalues? After normalized to lie in the[−1, 1] interval, what is
the distribution of the real eigenvalues ofA? A known result is that if the r.v. areη(0, 1), the probability that all eigenvalues
of a n × n random matrixA are real is1/2n(n−1)/4. Using this result we can obtain an exact solution to our problem in
the case where the r.v. areη(0, 1). Forn = 2 this probability is1/

√
2 (approximately0.7071067810). This implies that the

probability of obtaining a spiral (stable or unstable) isexactly (1 − 1/
√

2)/2, or approximately0.1464466095. As we have
shown that the probability of obtaining a saddle is0.5 we have that the probability of obtaining a node (stable or unstable) is
exactly (1/

√
2− 0.5)/2, or approximately0.1035533905. If we look at the simulation results forn = 1.000.000 we see that

Monte-Carlo gave us a remarkably good approximation:0.49961 for the saddle,0.14656 for the stable spiral and0.10351
for the stable node.

The reader who wants more details and the answers for the questions formulated in the beginning of this section
should consult [3]. It can be found together with other interesting papers in the subject of random matrices at www-
math.mit.edu/˜edelman/Edelman/publications.htm. Other fields where random matrices appear are number theory (for a
connection to Riemann Hypothesis see [5]), numerical analysis (calculation of the condition number of a random matrix
- see [2]) and multivariate statistics (test of hypothesis,principal component analysis, etc.).

Possible extensions of the present work include considering other symmetrical distributions or higher dimensional
systems. In most cases it is difficult to obtain an exact solution as the one found in the2 × 2 case with normally distributed
r.v. In such cases one should appeal to simulation in order toobtain an approximation of the exact solution.
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