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Abstract. In this paper we study the well-known linear system of défgial equations in the plane. Instead of
considering a fixed matrid, we assume that its entries are random variables and we abgue the probability

of the origin be each of the fixed points, such as saddle, reideThe problem was suggested by Steven Strogatz
in his book [8]. We examine the problem not only from the tlegical viewpoint but also from the computational
side, using simulation to obtain approximate answers.
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1 Introduction

Phenomena involving continuous evolution in time are ofterdeled using differential equations. The simplest andmos
used models are built using linear differential equatioiith wonstant coefficients. Those equations can be easilycezt
to systems of linear differential equations of first ordeneTexamples range from a simple harmonic oscillator [8] to an
oligopoly model where a number of firms compete for the mgiKet

Precisely, we will consider two-dimensional homogenemeslr systems with constant coefficients,c,d:

T = ar+by
y = cx+dy’

wherex = x(t), y = y(¢), t is an independent variable and the dot denotes derivativeakrix form we have

x = Ax,

A:(a b) and x:(x).
c d Y

Observe thaf0, 0) is always a fixed point of this system. On basic courses ofudfitial equations one studies the possible
configurations of the phase space associated with thissyBtdferent situations occur according to the signs of theer
of A, the determinani of A and ofr? — 4A. We say that a fixed point issaddle if A < 0 (figure 1). IfA > 0,7 < 0
(respectivelyr > 0) and72 — 4A > 0 we have astable (respectivelyunstable) node (figure 2). IfA > 0, 7 < 0 (resp.
T > 0) andr? — 4A < 0 we have astable (respectivelyunstable) spiral (figure 3) and if- = 0 we have aenter (figure 6).

Finally, there are the borderline casestif— 4A = 0 we have a degenerate node or a star (figures 4 and 5), depamding
the number of eigenvectors ¢r 2) associated with the eigenvalue 4f If A = 0 we have non-isolated fixed points.

where
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Figure 1: saddle Figure 2: stablenode

Figure 3: stable spiral Figure 4: degenerate node
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Figure5: star Figure 6: center

2 Random Matrices

The main purpose of this paper is to consider the matrikat describes a two-dimensional linear system with random
entries, or a random matrix. More precisely, we say that aimadtis arandommatrix when its entries are random variables
(r.v.) with a specified distribution. The problem we will diuoriginated from an exercise of the book “Nonlinear Dynesni
and Chaos”, by Steven H. Strogatz [8]. Suppose we randorokyalinear system. What'’s the probability that the origin is
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3 Random linear systems and simulation

for instance, a stable spiral?
Consider the matrixl that describes a two-dimensional linear system with enfig X», X5 e X4, where each entry is

arv.
_( X1 X
(3N

In this paper we will consider r.v. that are independent aedhiically distributed (i.i.d.). Randomly picking a lirmesystem
means that one randomly picks from the &, i = 1,...,4. Denoting by lower case the outcomes of the r.v. we have the

matrix
X X
A ( 1 @ )
T3 T4

which can easily be classified as one of the critical pointsteNhat some kinds of fixed point have zero probability of
occurrence if the r.v. is continuous. Take the center fomgla, which is characterized by having= X; + X4 = 0. We
have

P((0,0) be a center) =P(r =0) =0
The same holds for degenerate nodes and stars, which appeariv= 4A.

3 Therandom variables U[—1, 1] and 7(0, 1)

We will consider the cases where the r.v. are uniformly tigted in the interval—1, 1], denoted byU[-1, 1] and
normally distributed with meaf and variancd, denoted by;(0, 1). In both cases we have symmetric r.v. in the sense that
P(X < 0) = P(X > 0). This choice aims to give no privilege to any kind of fixed geirf we had chosen uniform r.v.
with values betweefl and1 we would have only positive traces and for instaff¢g), 0) be a stable spiral) = 0. The r.v.
U[-1, 1] has density function given by

1 if —1<z<1
_ 27 >~ >
flz) = { 0, otherwise .

The density of a r.v. normally distributed0, 1) is

The graphs of these density functions are shown below.

A A

1/2

-1 0 1 0 >

Figure7: U(-1,1) Figure8: n(0,1)

The random matrix with entrieg0, 1) appears frequently in the literature. This is not by chatieenormalr.v. has some
desired properties that make its choice natural. In ordpraegide an example, notice that asking whether-a2 matrix A
is a stable spiral is the same as asking0f A is a stable spiral. The problem is invariant to positive acatultiplication.
This fact implies that trace, determinant arfd— 4A have the same signs farand200A.
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Using this invariance we can provide a geometric interpi@tdo the original problem posed in section 2. Normalizing
the matrices so that they all have norm equall fave can think that instead d&* we are calculating probabilities in
53 c R*. Observe that if we had allowed multiplication by an arbitrecalar we should consider the projective spBée
The invariance of multiplication by positive scalars alslistus that the regions iR* corresponding to each type of behavior
of the origin are cones: for example,(if, yo, 20, wo) represents a matrix that is a stable node than the projestitms
point in S3 represents the whole ling(z, o, 20, wo ), « € RT. We could ask ourselves what is the probability distribuitio
in the sphere. The answer is quite simple: it is uniform beedar(x1, 2, 23, 24) € S® we have,

1 224242
g(w1, 33, 05,4) = f(21) f(22) f (23) f (w4) = ——pelriteatoided) = g,
V2T
where K is a constant equal te\/% e since (x1,...,24) belongs toS? and g(z1,z2, 3, 74) is the joint density of
X;,i=1,...,4. This result obviously is valid for spheres of any radius.

What we have shown is that a normal independent distribini@t implies an uniform distribution i$®. What about the
reciprocal of this fact? Which independent marginal dégsghould we consider in order to obtain a joint density fiomc
constant on spheres? To save space, let’s run the calaiddtin2 dimensions. We want to find(z) e f2(y) such that

Ixy(@,y) = fi(@)f2(y) = h(a® + ),

wherefx y (z,y) is a two-dimensional density anfd(x) and f2(y) are one-dimensional densities. Assuming thag and
h have at least one derivative we have

fi(2) fa(y) = 22k’ (2 + y?) and fi(z) f5(y) = 2yh' (2® + ¢?).
Equating both equations and assuminandy different of zero gives us
) _ A
zfi(z)  yfly) 7

where) is an arbitrary constant because each term depends onlyeoafdhe variables. Solving the differential equation
we obtain expressions for the one-dimensional densities:

a2

w2 Y
fl(l') = C’1€AT andfg(y> = 026 2,
which are normal densities with zero mean variance depgratin. Thus, if we want a joint density function that is constant

in spheres it suffices to choose one-dimensional normdbr.each direction.

4 Searching for a solution

For one of the fixed points, namely the saddle, it is possiblabtain explicitly the probability of occurrence in a sirapl
way. We will make one assumption:

P(X;>0)=P(X;<0)=1/2,i=1,...,4. 1)
The two r.v. we are considering satisfy this condition. Rerber that the origin is a saddle if and only if
P((0,0) be a saddle) = P(A < 0) = P(X; X4 — XoX35 < 0) = P(Y] < Ya),

whereY; = X; X, andY; = X5 X3. By constructior; andY; are identically distributed. Besides, they inherit thegany
described in 1:

11 11 1
P(Yi >0) =P(X1>0, X4 >0)+P(X1 <0, X4 <0) =5 o+ 5 5 =15
Note that in the second passage we used fiati = 1,...,4 are independent. The calculation above implies that

P(Y; < 0) = 1/2 by complementarity. The same holds fB. Our problem now is to calculat®(Y; < Y3). The
space of possible outcomes 6f1,Y2) is Qy, v, = {(y1,92) € R? | y1 € Qy e y2 € Qy}, WhereQy is the
common sample space of both andY>. We want to know what is the probability of the pdlr;, Y2) belongs to the
setT = {(y1,y2) € R? | y1 < ya}. Figure 9 exemplifies the sétfor theU[—1, 1] case:

Preprint MAT. 18/06, communicated on August%02006 to the Department of Mathematics, Pontificia Ursidade Catblica — Rio de Janeiro, Brazil.



5 Random linear systems and simulation

Y
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Figure9: set T

Having picture 9 in mind it is easy to calculate the prob#&piif the origin be a saddle:
P((0,0) be asaddle) = P(Y; < Y2) =P((Y1,Y2) € T)

1 1
:§IP’(Y1>0,Y2>O)+]P’(Y1>0,Y2<0)+§IP(Y1 <0,Y2 <0)
11 1 11 1

217173173
We will now analyze the unstable spiral. We saw in sectionat the origin is an unstable spiralif > 0, A > 0 e
72 — 4A < 0. So, the probability that the origin is an unstable spiral is

P((0,0) be an unstable spiral)
=P(r>0,A>0, 7% —4A <0)

////f$17$2,$3,$4)dm1dx2dx3dx4

-1/ /D Fa (20) Fcy (22) Fcy (23) fx, (24) dry dva g s,

wherefx, (z;) are the densities of the independentrandom variables = 1, ..., 4, f(x1, 2, 23, x4) is the joint probability
density Ole, Xo, X3, X4 andD = {(1‘1, x9,T3, .154) cR | r1+x4 >0, 2124 —T223 > 0, (1‘1 +$4)2 —4(351354 —1‘21‘3) <
0}.

The integral above is not simple to solve because it is not gaexplicit the limits of integration. In fact, on calculus
courses multiple integrals are calculated using Fubihéotem, which change them into iterated integrals.d(e?) and
h(z) be functions of one variable such that for alive haveg(x) < h(z) and R be the region delimitated by the lines
x = a, x = b and by the graphg = ¢g(z) andy = h(z). Suppose we want to calculate the double integral of a fancti

f(z,y) in R. Then we would have
b ph(x)
// f(@,y)dzdy =/ / f@,y)dxdy.
R a Jg(x)

In the general case what is often done is to divide the regioifon to change variables to fall into this case. Strange as
it may seem, this procedure is quite limited. For exampleafoeegion defined by (z,y) < 0, h(z,y) < 0 with g(z,y)
andh(z,y) polynomials of degree, the integral may not be tractable, as for a region defined(byy) < 0 with g(x,y)
polynomial of degreé. For this reason numerical methods are frequently empltyddal with integrals.

Before entering next section we would like to make a warnfdige may have the temptation of solving this problem in
the casd/[—1, 1] by simply calculating the corresponding area of each of thieal points in the so calledability diagram,
drawn in the figure 10.
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T
unstable nodes

unstable spirals

centers A

saddle points |

stable spirals
stable nodes

Q(rs, degenerate nodes

Figure 10: stability diagram

Note that the rectangle-2, 2] x [—2, 2] represents all possible traces and determinants obtajnechdomly picking the
entries of matrixA according to a uniform distribution betweeri and1. Except for the saddle node, the quotients of each
of the areas divided by the area of the rectangle does nasmrnd to the probability of obtaining each critical poirttis
happens because the axis of the figureraa@d A andthey are not uniformrandomvariablesin [—1, 1]. Let’s take a closer
look at the trace: itis the sut; + X4 of two U[—1, 1] r.v. What is the cumulative distribution of this sum? Thewasisis

(2£2)2 if —2<x<0,
o(zx2y - ) 1 i p<ae<2
2 2 — - =

A reference that helps to obtain the above formula is in [@]oBbtain a formula for the cumulative distribution of the sum
of n random variables uniformly distributed check [1], freela#able at http://cgm.cs.mcgill.ca/ luc/rnbookindexnh

5 Monte Carlo method

Monte-Carlo method is a largely used tool for obtaining appnations of problems that are hard to solve explicitly.
It consists of generating random numbers and keeping tratliedraction of them that satisfies a certain property. & th
context of our problem we will use Monte-Carlo to estimate frobabilities of(0,0) be each of the fixed points. The
implementation is simple and can be done following the stigssribed below:

Initializing the variables Initialize variables saddle, unstable node, stable naastable spiral and stable spiral as zero
and define variables tau for trace, delta for determinantanbelta forr? — 4A. Proceed as follows:

Step 1 GenerateX;, X2, X3, X4 with distributionU[—1, 1]) or (0, 1).
Step 2 set tau =X, + X, , Delta =X; X, — X, X3 and tauDelta 72 — 4A.
Step 3 if delta < 0 set saddle = saddle1 and return to step.

Step 4 if tauDelta> 0 and tau> 0 (respectively tau 0) set unstable node unstable node-1 (respectively stable
node= stable noder1) and return to step.

Step 5 if tau > 0 (respectively tau< 0) set unstable spirak unstable spiral-1 (respectively stable spirat stable
spiral+1) and return to step.

The estimate for each of the probabilities is obtained digjane of the variables (e.g. stable node)ybyVe wrote a code
in Java and ran the program for various valuesrofJava language provides a very useful package called Random to dea
with the generation of random numbers. For example in thi&gge it is possible to generate a random nunibbetween
0 and1. The routine described above was run for bGth-1, 1] andn(0, 1).

Before analyzing the results obtained we will discuss arvirtgmt issue concerning Monte-Carlo estimators: the nada
reduction techniques. The goal of these techniques is tiol @oexcessive number of generations of the random variable
reducing the sample variance of the Monte-Carlo estimatdfo provide an example we will consider the simplest varganc
reduction technique, called the method of the antithetitatsdes. The idea is quite simple: instead of sampling the r.
sequentially one organizes the sample in pairs of r.v negjgtcorrelated. More precisely: if the r.v. being samplei,
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7 Random linear systems and simulation

we choose a functiofi(X') such thatX and f(X) have the same distribution but are negatively correlatbdsTinstead of
considering outcomegX; }_, we will consider{ W}, whereW; = (X, + f(X;))/2.

A possible way of detecting the improvement of this techaidgito execute the program until the sample standard
deviationS/\/n, whereS? = E(%_IX)Q is less than or equal to a pre-fixed valdleand at leasfi00 simulations were
performed. It is expected that a smaller sample is neededhie\e the desired level of confiability. More details can be
found in[6).

As expected, we obtained some gain using antithetic vagafilables (1) and (2) show us the gain in using this method
in the case of the stable spiral. The random variable coreideas; (0, 1).

number of simulationg
1 100
0.1 100
0.01 1156
0.001 124187
0.0001 12499179

Table 1: Monte-Carlo simulation

number of simulations
1 100
0.1 100
0.01 984
0.001 103740
0.0001 10357100

Table 2. Monte-Carlo simulation with antithetic variables

6 Results

Initially we performed100.000 experiments for each distribution on a Pentidmwith 2.00GHz. Remember that in each
experiment four random numbers were generated, reprageht entries of the random matrix being considered. Thétees
are shown in table 3:

U[*lv 1] 7’(07 1)

saddle 0.50105 | 0.49931
stable node | 0.08881 | 0.10351
unstable node 0.08929 | 0.10351
stable spiral | 0.15916 | 0.14563
unstable spiral 0.16169 | 0.14819

Table 3: Monte-carlo simulation for 100.000 experiments

The execution time was less than one second in both caseds®/ria the program fot.000.000 experiments and the

results are in table 4.
The execution times were less than one second forltpel, 1] and about3 seconds for the)(0,1). Note that the
approximated probability for the saddle is in accordandé e exact value /2 derived in section 4.
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U[*lv 1] 7’(07 1)
saddle 0.50036 | 0.49961
stable node | 0.09054 | 0.10347
unstable node 0.09036 | 0.10336
stable spiral | 0.15963 | 0.14656
unstable spiral 0.15910 | 0.14699

Table4: Monte-Carlo simulation for 1.000.000 experiments

7 Conclusions and extensions

Random matrices appear in many different contexts. Givercttmputational power we have available nowadays it is
almost unavoidable to use simulation to obtain approxiomstiand/or empirical evidence of problems involving random
matrices. Besides the problem considered here, there amg imi@iguing questions related to random matrices: given a
n x n random matrix4 with entries distributed according ta;&0, 1) distribution, what is the probability that exacttyof its
eigenvalues are real? What is the expected number of realaipes? After normalized to lie in tfie1, 1] interval, what is
the distribution of the real eigenvalues4? A known result is that if the r.v. ang0, 1), the probability that all eigenvalues
of an x n random matrixA are real isl /2"(»~1)/4, Using this result we can obtain an exact solution to our ferokin
the case where the r.v. an€0, 1). Forn = 2 this probability is1 /+/2 (approximately).7071067810). This implies that the
probability of obtaining a spiral (stable or unstablepiactly (1 — 1/1/2)/2, or approximately).1464466095. As we have
shown that the probability of obtaining a sadd|®.is we have that the probability of obtaining a node (stable ataivie) is
exactly (1/v/2 — 0.5)/2, or approximately).1035533905. If we look at the simulation results fer = 1.000.000 we see that
Monte-Carlo gave us a remarkably good approximatiof9961 for the saddle().14656 for the stable spiral and.10351
for the stable node.

The reader who wants more details and the answers for theiguedormulated in the beginning of this section
should consult [3]. It can be found together with other iagting papers in the subject of random matrices at www-
math.mit.edu/"edelman/Edelman/publications.htm. Oftedds where random matrices appear are nhumber theory (for a
connection to Riemann Hypothesis see [5]), numerical @makgalculation of the condition number of a random matrix
- see [2]) and multivariate statistics (test of hypothgsisicipal component analysis, etc.).

Possible extensions of the present work include consigesther symmetrical distributions or higher dimensional
systems. In most cases it is difficult to obtain an exact swiuds the one found in tH2 x 2 case with normally distributed
r.v. In such cases one should appeal to simulation in ordetain an approximation of the exact solution.
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